Direct laser-written optomechanical membranes in fiber Fabry-Perot
cavities
- URL: http://arxiv.org/abs/2212.13532v4
- Date: Tue, 23 Jan 2024 12:14:03 GMT
- Title: Direct laser-written optomechanical membranes in fiber Fabry-Perot
cavities
- Authors: Lukas Tenbrake, Alexander Fa{\ss}bender, Sebastian Hofferberth, Stefan
Linden, Hannes Pfeifer
- Abstract summary: We demonstrate a cavity optomechanical experiment using 3D-laser-written polymer membranes inside fiber Fabry-Perot cavities.
We observe optomechanical spring tuning of the mechanical resonator by tens of kHz exceeding its linewidth at cryogenic temperatures.
- Score: 41.94295877935867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrated micro and nanophotonic optomechanical experiments enable the
manipulation of mechanical resonators on the single phonon level. Interfacing
these structures requires elaborate techniques limited in tunability,
flexibility, and scaling towards multi-mode systems. Here, we demonstrate a
cavity optomechanical experiment using 3D-laser-written polymer membranes
inside fiber Fabry-Perot cavities. Vacuum coupling strengths of ~ 30 kHz to the
fundamental megahertz mechanical mode are reached. We observe optomechanical
spring tuning of the mechanical resonator by tens of kHz exceeding its
linewidth at cryogenic temperatures. The extreme flexibility of the laser
writing process allows for a direct integration of the membrane into the
microscopic cavity. The direct fiber coupling, its scaling capabilities to
coupled resonator systems, and the potential implementation of dissipation
dilution structures and integration of electrodes make it a promising platform
for fiber-tip integrated accelerometers, optomechanically tunable multi-mode
mechanical systems, or directly fiber-coupled systems for microwave to optics
conversion.
Related papers
- Design of a release-free piezo-optomechanical quantum transducer [0.0]
A promising approach to quantum microwave-optics transduction uses an intermediary mechanical mode along with piezo-optomechanical interactions.
Here, we introduce a release-free, i.e. non-suspended, piezo-optomechanical transducer.
We propose and design a silicon-on-sapphire (SOS) release-free transducer with appealing piezo- and optomechanical performance.
arXiv Detail & Related papers (2024-08-27T15:13:41Z) - Phononic Crystals in Superfluid Thin-Film Helium [49.1574468325115]
Mechanical excitations in superfluid thin films interact with the optical mode of an optical microresonator by modulation of its effective refractive index.
We realize a phononic crystal cavity confining third sound modes in a superfluid helium film to length scales close to the third sound wavelength.
arXiv Detail & Related papers (2024-02-28T11:45:35Z) - Two-dimensional optomechanical crystal resonator in gallium arsenide [5.523034730355238]
A promising platform for this is an optomechanical crystal resonator.
We adapt this design to gallium arsenide, a natural thin-film single-crystal piezoelectric.
arXiv Detail & Related papers (2023-07-26T19:05:56Z) - Phononically shielded photonic-crystal mirror membranes for cavity
quantum optomechanics [48.7576911714538]
We present a highly reflective, sub-wavelength-thick membrane resonator featuring high mechanical quality factor.
We construct a Fabry-Perot-type optical cavity, with the membrane forming one terminating mirror.
We demonstrate optomechanical sideband cooling to mK-mode temperatures, starting from room temperature.
arXiv Detail & Related papers (2022-12-23T04:53:04Z) - Microwave-optics Entanglement via Cavity Optomagnomechanics [4.24565587746027]
A new mechanism for preparing stationary entanglement between microwave and optical cavity fields is proposed.
The microwave-optics entanglement is robust against thermal noise.
It will find broad potential applications in quantum networks and quantum information processing with hybrid quantum systems.
arXiv Detail & Related papers (2022-08-23T02:58:10Z) - Simultaneous Brillouin and piezoelectric coupling to high-frequency bulk
acoustic resonator [2.031688729582683]
We present a novel hybrid microwave/optical platform capable of coupling to bulk acoustic waves through cavity-enhanced piezoelectric and photoelastic interactions.
The modular, tunable system achieves fully resonant and well-mode-matched interactions between a 3D microwave cavity, a high-frequency bulk acoustic resonator, and a Fabry Perot cavity.
arXiv Detail & Related papers (2022-08-12T18:48:35Z) - Achievements and Perspectives of Optical Fiber Fabry-Perot Cavities [45.82374977939355]
Fabry-Perot interferometers have stimulated numerous scientific and technical applications.
These Fiber Fabry-Perot Cavities (FFPCs) are stimulating extended applications in many fields.
arXiv Detail & Related papers (2021-11-16T15:03:50Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Microwave-to-optical conversion with a gallium phosphide photonic
crystal cavity [0.0]
We present a novel platform for microwave-to-optical conversion comprising a photonic crystal cavity made of single-crystal, piezoelectric gallium phosphide integrated on pre-fabricated niobium circuits.
We estimate that the system could achieve an electromechanical coupling rate to a superconducting transmon qubit of $sim$ 200 kHz.
arXiv Detail & Related papers (2021-05-27T15:40:14Z) - Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN [52.915502553459724]
In this work we present a hybrid system consisting of defect centers in few-layer hBN grown by chemical vapor deposition and a fiber-based Fabry-Perot cavity.
We achieve very large cavity-assisted signal enhancement up to 50-fold and equally strong linewidth narrowing owing to cavity funneling.
Our work marks an important milestone for the deployment of 2D materials coupled to fiber-based cavities in practical quantum technologies.
arXiv Detail & Related papers (2020-06-23T14:20:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.