論文の概要: 5G Network Management, Orchestration, and Architecture: A Practical
Study of the MonB5G project
- arxiv url: http://arxiv.org/abs/2212.13747v1
- Date: Wed, 28 Dec 2022 08:48:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-19 13:21:05.240223
- Title: 5G Network Management, Orchestration, and Architecture: A Practical
Study of the MonB5G project
- Title(参考訳): 5Gネットワークマネジメント、オーケストレーション、アーキテクチャ: MonB5Gプロジェクトの実践的研究
- Authors: Hisham A. Kholidy, Mohammed Abuzamak
- Abstract要約: MonB5Gプロジェクトは、5G LTE以降の大規模ネットワークスライシングをサポートするため、ゼロタッチ管理とオーケストレーションの提供を目指している。
5G LTE以降の大規模ネットワークスライシングをサポートするため、ゼロタッチ管理とオーケストレーションを提供するため、EUが出資するMonB5Gプロジェクトを踏まえて、これらのトピックを調査する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The cellular device explosion in the past few decades has created many
different opportunities for development for future generations. The 5G network
offers a greater speed in the transmissions, a lower latency, and therefore
greater capacity for remote execution. The benefits of AI for 5G network
slicing orchestration and management will be discussed in this survey paper. We
will study these topics in light of the EU-funded MonB5G project that works
towards providing zero-touch management and orchestration in the support of
network slicing at massive scales for 5G LTE and beyond.
- Abstract(参考訳): 過去数十年間の細胞デバイスの爆発は、次世代の開発に様々な機会を生み出してきた。
5Gネットワークは送信速度が向上し、レイテンシが低下し、したがってリモート実行のキャパシティが向上する。
オーケストレーションと管理を行う5GネットワークスライシングにおけるAIのメリットについては,この調査論文で論じる。
5G LTE以降の大規模ネットワークスライシングをサポートするため、ゼロタッチ管理とオーケストレーションを提供するため、EUが出資するMonB5Gプロジェクトに基づいてこれらのトピックを研究します。
関連論文リスト
- Penetration Testing of 5G Core Network Web Technologies [53.89039878885825]
Web セキュリティの観点から 5G コアのセキュリティ評価を行った。
我々はSTRIDE脅威モデリングアプローチを用いて、脅威ベクトルと関連する攻撃の完全なリストを定義する。
我々の分析によると、これらのコアはすべて、特定された攻撃ベクトルのうち少なくとも2つに対して脆弱である。
論文 参考訳(メタデータ) (2024-03-04T09:27:11Z) - 5G Cellular -- An Energy Efficiency Perspective [0.0]
本研究の目的は,エネルギー効率の観点から5Gを実現することにある。
改良や修正によって5Gセルのエネルギー効率が向上する5Gセル内の特定の領域を指摘する努力がなされる。
論文 参考訳(メタデータ) (2024-02-18T20:01:55Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
テラヘルツ(THz)無線ネットワークは、第5世代(B5G)以上の時代を触媒すると予想されている。
いくつかのB5Gアプリケーションの超信頼性と低レイテンシ要求を満たすためには、新しいモビリティ管理アプローチが必要である。
本稿では、インテリジェントなユーザアソシエーションとリソースアロケーションを実現するとともに、フレキシブルで適応的なモビリティ管理を可能にする、全体論的MAC層アプローチを提案する。
論文 参考訳(メタデータ) (2022-08-17T03:00:24Z) - Towards Supporting Intelligence in 5G/6G Core Networks: NWDAF
Implementation and Initial Analysis [3.5573601621032935]
本稿では,NWDAFをオープンソースソフトウェアを用いて開発した5Gネットワークに組み込む。
5Gネットワークの期待される限界は,6Gネットワーク開発へのモチベーションとして議論される。
論文 参考訳(メタデータ) (2022-05-30T14:15:46Z) - A Survey on XAI for 5G and Beyond Security: Technical Aspects, Challenges and Research Directions [5.955491600905514]
本稿では、5G以上の利害関係者が次世代ネットワークを保護するために使用されるインテリジェントなブラックボックスシステムを調べることができる、説明可能なAI(XAI)手法の可能性について検討する。
XAIを5G以降のセキュリティドメインで使用するという目標は、MLベースのセキュリティシステムの意思決定プロセスが5G以上のステークホルダに対して透過的かつ理解しやすいものになることだ。
論文 参考訳(メタデータ) (2022-04-27T10:26:24Z) - On Topology Optimization and Routing in Integrated Access and Backhaul
Networks: A Genetic Algorithm-based Approach [70.85399600288737]
IABネットワークにおけるトポロジ最適化とルーティングの問題について検討する。
我々は、IABノード配置と非IABバックホールリンク分布の両方に効率的な遺伝的アルゴリズムベースのスキームを開発する。
メッシュベースのIABネットワークを実現する上での課題について論じる。
論文 参考訳(メタデータ) (2021-02-14T21:52:05Z) - To Talk or to Work: Energy Efficient Federated Learning over Mobile
Devices via the Weight Quantization and 5G Transmission Co-Design [49.95746344960136]
Federated Learning (FL) は,モバイルデバイス間での大規模学習タスクのための新たなパラダイムである。
モバイルデバイス上でFLをサポートする効果的な無線ネットワークアーキテクチャを確立する方法は不明です。
我々は、異種5Gモバイル機器上でのエネルギー効率FLのための無線伝送および重み量子化協調設計を開発する。
論文 参考訳(メタデータ) (2020-12-21T01:13:44Z) - True-data Testbed for 5G/B5G Intelligent Network [46.09035008165811]
私たちは5G/B5Gインテリジェントネットワーク(TTIN)のための世界初の真のデータテストベッドを構築します
TTINは5G/B5Gオンサイト実験ネットワーク、データ取得とデータウェアハウス、AIエンジンとネットワーク最適化で構成されている。
本稿では,TTINのシステムアーキテクチャとモジュール設計について詳述する。
論文 参考訳(メタデータ) (2020-11-26T06:42:36Z) - Machine Learning (ML) In a 5G Standalone (SA) Self Organizing Network
(SON) [0.0]
機械学習(ML)は、運用、管理、保守(OAM)活動を強化する上で重要な要素である自己組織化ネットワーク(SON)に含まれる。
この研究の主な目的は、5Gスタンドアロンコアネットワークにおける機械学習(ML)の概要である。
論文 参考訳(メタデータ) (2020-11-24T18:57:40Z) - Long Short Term Memory Networks for Bandwidth Forecasting in Mobile
Broadband Networks under Mobility [6.112377814215607]
MBBネットワークにおける帯域幅予測実験のためのオープンソースのフレームワークであるHINDSIGHT++を紹介する。
主に第5世代(5G)ネットワークの帯域幅予測に重点を置いている。
特に5Gophersは,米国内で運用されている5Gネットワーク上でのネットワーク性能を計測するための,最初のオープンソースの試みである。
論文 参考訳(メタデータ) (2020-11-20T18:59:27Z) - A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From
Communications to Sensing and Intelligence [152.89360859658296]
5Gネットワークは、拡張モバイルブロードバンド(eMBB)、超信頼性低遅延通信(URLLC)、大規模機械型通信(mMTC)の3つの典型的な利用シナリオをサポートする必要がある。
一方、UAVはコスト効率のよい航空プラットフォームとして利用でき、地上の利用者に高い高度と3D空間での操作性を利用して通信サービスを強化することができる。
一方,UAVと地上ユーザの両方に同時に通信サービスを提供することは,ユビキタスな3D信号網と強力な地上ネットワーク干渉の必要性から,新たな課題を提起する。
論文 参考訳(メタデータ) (2020-10-19T08:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。