Evaluating Generalizability of Deep Learning Models Using
Indian-COVID-19 CT Dataset
- URL: http://arxiv.org/abs/2212.13929v1
- Date: Wed, 28 Dec 2022 16:23:18 GMT
- Title: Evaluating Generalizability of Deep Learning Models Using
Indian-COVID-19 CT Dataset
- Authors: Suba S, Nita Parekh, Ramesh Loganathan, Vikram Pudi and Chinnababu
Sunkavalli
- Abstract summary: ma-chine learning (ML) approaches for automatic processing of CT scan images in clinical setting are trained on limited and biased sub-sets of publicly available COVID-19 data.
This has raised concerns regarding the generalizability of these models on external datasets, not seen by the model during training.
To address some of these issues, in this work CT scan images from confirmed COVID-19 data obtained from one of the largest public repositories, COVIDx CT 2A were used for training and internal vali-dation of machine learning models.
- Score: 5.398550081886242
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Computer tomography (CT) have been routinely used for the diagnosis of lung
diseases and recently, during the pandemic, for detecting the infectivity and
severity of COVID-19 disease. One of the major concerns in using ma-chine
learning (ML) approaches for automatic processing of CT scan images in clinical
setting is that these methods are trained on limited and biased sub-sets of
publicly available COVID-19 data. This has raised concerns regarding the
generalizability of these models on external datasets, not seen by the model
during training. To address some of these issues, in this work CT scan images
from confirmed COVID-19 data obtained from one of the largest public
repositories, COVIDx CT 2A were used for training and internal vali-dation of
machine learning models. For the external validation we generated
Indian-COVID-19 CT dataset, an open-source repository containing 3D CT volumes
and 12096 chest CT images from 288 COVID-19 patients from In-dia. Comparative
performance evaluation of four state-of-the-art machine learning models, viz.,
a lightweight convolutional neural network (CNN), and three other CNN based
deep learning (DL) models such as VGG-16, ResNet-50 and Inception-v3 in
classifying CT images into three classes, viz., normal, non-covid pneumonia,
and COVID-19 is carried out on these two datasets. Our analysis showed that the
performance of all the models is comparable on the hold-out COVIDx CT 2A test
set with 90% - 99% accuracies (96% for CNN), while on the external
Indian-COVID-19 CT dataset a drop in the performance is observed for all the
models (8% - 19%). The traditional ma-chine learning model, CNN performed the
best on the external dataset (accu-racy 88%) in comparison to the deep learning
models, indicating that a light-weight CNN is better generalizable on unseen
data. The data and code are made available at https://github.com/aleesuss/c19.
Related papers
- COVIDx CT-3: A Large-scale, Multinational, Open-Source Benchmark Dataset
for Computer-aided COVID-19 Screening from Chest CT Images [82.74877848011798]
We introduce COVIDx CT-3, a large-scale benchmark dataset for detection of COVID-19 cases from chest CT images.
COVIDx CT-3 includes 431,205 CT slices from 6,068 patients across at least 17 countries.
We examine the data diversity and potential biases of the COVIDx CT-3 dataset, finding significant geographic and class imbalances.
arXiv Detail & Related papers (2022-06-07T06:35:48Z) - Learning from Pseudo Lesion: A Self-supervised Framework for COVID-19
Diagnosis [22.54540093657541]
The Coronavirus disease 2019 (COVID-19) has rapidly spread all over the world since its first report in December 2019.
In recent years, deep learning-based approaches have shown impressive performance in myriad image recognition tasks.
We proposed in this paper a novel self-supervised pretraining method based on pseudo lesions generation and restoration for COVID-19 diagnosis.
arXiv Detail & Related papers (2021-06-23T11:21:30Z) - Randomly Initialized Convolutional Neural Network for the Recognition of
COVID-19 using X-ray Images [0.0]
coronavirus disease (COVID-19) has been declared a worldwide pandemic.
One potential solution to detect COVID-19 is by analyzing the chest X-ray images using Deep Learning (DL) models.
In this study, we propose a novel randomly CNN architecture for the recognition of COVID-19.
The proposed CNN model yields encouraging results with 94% and 99% of accuracy for COVIDx and enhanced COVID-19 dataset, respectively.
arXiv Detail & Related papers (2021-05-17T23:40:37Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
Deep learning (DL) classification models were trained to identify COVID-19-positive patients on 3D computed tomography (CT) datasets from different countries.
We trained nine identical DL-based classification models by using combinations of the datasets with a 72% train, 8% validation, and 20% test data split.
The models trained on multiple datasets and evaluated on a test set from one of the datasets used for training performed better.
arXiv Detail & Related papers (2021-02-18T21:14:52Z) - COVID-Net CT-2: Enhanced Deep Neural Networks for Detection of COVID-19
from Chest CT Images Through Bigger, More Diverse Learning [70.92379567261304]
We introduce COVID-Net CT-2, enhanced deep neural networks for COVID-19 detection from chest CT images.
We leverage explainability to investigate the decision-making behaviour of COVID-Net CT-2.
Results are promising and suggest the strong potential of deep neural networks as an effective tool for computer-aided COVID-19 assessment.
arXiv Detail & Related papers (2021-01-19T03:04:09Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - Explainable COVID-19 Detection Using Chest CT Scans and Deep Learning [0.07994291858620557]
We propose a transfer learning strategy using custom-sized input tailored for each deep architecture to achieve the best performance.
We conduct extensive sets of experiments on two CT image datasets, namely the SARS-CoV-2 CT-scan and the COVID19-CT.
The obtained results show superior performances for our models compared with previous studies.
arXiv Detail & Related papers (2020-11-09T17:37:31Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - COVID-CT-Dataset: A CT Scan Dataset about COVID-19 [33.60943657492132]
During the outbreak time of COVID-19, computed tomography (CT) is a useful manner for diagnosing COVID-19 patients.
Due to privacy issues, publicly available COVID-19 CT datasets are highly difficult to obtain.
We build an open-sourced dataset -- COVID-CT, which contains 349 COVID-19 CT images from 216 patients and 463 non-COVID-19 CTs.
arXiv Detail & Related papers (2020-03-30T23:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.