Explainable COVID-19 Detection Using Chest CT Scans and Deep Learning
- URL: http://arxiv.org/abs/2011.05317v1
- Date: Mon, 9 Nov 2020 17:37:31 GMT
- Title: Explainable COVID-19 Detection Using Chest CT Scans and Deep Learning
- Authors: Hammam Alshazly and Christoph Linse and Erhardt Barth and Thomas
Martinetz
- Abstract summary: We propose a transfer learning strategy using custom-sized input tailored for each deep architecture to achieve the best performance.
We conduct extensive sets of experiments on two CT image datasets, namely the SARS-CoV-2 CT-scan and the COVID19-CT.
The obtained results show superior performances for our models compared with previous studies.
- Score: 0.07994291858620557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores how well deep learning models trained on chest CT images
can diagnose COVID-19 infected people in a fast and automated process. To this
end, we adopt advanced deep network architectures and propose a transfer
learning strategy using custom-sized input tailored for each deep architecture
to achieve the best performance. We conduct extensive sets of experiments on
two CT image datasets, namely the SARS-CoV-2 CT-scan and the COVID19-CT. The
obtained results show superior performances for our models compared with
previous studies, where our best models achieve average accuracy, precision,
sensitivity, specificity and F1 score of 99.4%, 99.6%, 99.8%, 99.6% and 99.4%
on the SARS-CoV-2 dataset; and 92.9%, 91.3%, 93.7%, 92.2% and 92.5% on the
COVID19-CT dataset, respectively. Furthermore, we apply two visualization
techniques to provide visual explanations for the models' predictions. The
visualizations show well-separated clusters for CT images of COVID-19 from
other lung diseases, and accurate localizations of the COVID-19 associated
regions.
Related papers
- Auto-Lesion Segmentation with a Novel Intensity Dark Channel Prior for
COVID-19 Detection [0.24578723416255752]
This study develops a CT-based radiomics framework for differentiation of COVID-19 from other lung diseases.
The model categorizes images into three classes: COVID-19, non-COVID-19, or normal.
The best performing classification model, Residual Neural Network with 50 layers (Resnet-50), attained an average accuracy, precision, recall, and F1-score of 98.8%, 99%, 98%, and 98% respectively.
arXiv Detail & Related papers (2023-09-22T06:09:48Z) - Evaluating Generalizability of Deep Learning Models Using
Indian-COVID-19 CT Dataset [5.398550081886242]
ma-chine learning (ML) approaches for automatic processing of CT scan images in clinical setting are trained on limited and biased sub-sets of publicly available COVID-19 data.
This has raised concerns regarding the generalizability of these models on external datasets, not seen by the model during training.
To address some of these issues, in this work CT scan images from confirmed COVID-19 data obtained from one of the largest public repositories, COVIDx CT 2A were used for training and internal vali-dation of machine learning models.
arXiv Detail & Related papers (2022-12-28T16:23:18Z) - COVIDx CT-3: A Large-scale, Multinational, Open-Source Benchmark Dataset
for Computer-aided COVID-19 Screening from Chest CT Images [82.74877848011798]
We introduce COVIDx CT-3, a large-scale benchmark dataset for detection of COVID-19 cases from chest CT images.
COVIDx CT-3 includes 431,205 CT slices from 6,068 patients across at least 17 countries.
We examine the data diversity and potential biases of the COVIDx CT-3 dataset, finding significant geographic and class imbalances.
arXiv Detail & Related papers (2022-06-07T06:35:48Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
We propose a method that does not require either large annotated datasets or backpropagation to estimate the filters of a convolutional neural network (CNN)
For a few CT images, the user draws markers at representative normal and abnormal regions.
The method generates a feature extractor composed of a sequence of convolutional layers, whose kernels are specialized in enhancing regions similar to the marked ones.
arXiv Detail & Related papers (2021-11-16T15:03:42Z) - COVID-Net CT-2: Enhanced Deep Neural Networks for Detection of COVID-19
from Chest CT Images Through Bigger, More Diverse Learning [70.92379567261304]
We introduce COVID-Net CT-2, enhanced deep neural networks for COVID-19 detection from chest CT images.
We leverage explainability to investigate the decision-making behaviour of COVID-Net CT-2.
Results are promising and suggest the strong potential of deep neural networks as an effective tool for computer-aided COVID-19 assessment.
arXiv Detail & Related papers (2021-01-19T03:04:09Z) - Screening COVID-19 Based on CT/CXR Images & Building a Publicly
Available CT-scan Dataset of COVID-19 [6.142272540492935]
This study builds a large-size publicly available CT-scan dataset, consisting of more than 13k CT-images of more than 1000 individuals, in which 8k images are taken from 500 patients infected with COVID-19.
We propose a deep learning model for screening COVID-19 using our proposed CT dataset and report the baseline results.
Finally, we extend the proposed CT model for screening COVID-19 from CXR images using a transfer learning approach.
arXiv Detail & Related papers (2020-12-28T11:52:33Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - Adaptive Feature Selection Guided Deep Forest for COVID-19
Classification with Chest CT [49.09507792800059]
We propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images.
We evaluate our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP)
arXiv Detail & Related papers (2020-05-07T06:00:02Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z) - COVID_MTNet: COVID-19 Detection with Multi-Task Deep Learning Approaches [5.578413517654704]
We propose a fast and efficient way to identify COVID-19 patients with multi-task deep learning (DL) methods.
X-ray and CT scan images are considered to evaluate the proposed technique.
The detection model shows around 84.67% testing accuracy from X-ray images and 98.78% accuracy in CT-images.
arXiv Detail & Related papers (2020-04-07T23:19:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.