論文の概要: Breaking the Architecture Barrier: A Method for Efficient Knowledge
Transfer Across Networks
- arxiv url: http://arxiv.org/abs/2212.13970v1
- Date: Wed, 28 Dec 2022 17:35:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-29 15:56:10.988956
- Title: Breaking the Architecture Barrier: A Method for Efficient Knowledge
Transfer Across Networks
- Title(参考訳): アーキテクチャ障壁を破る:ネットワークを横断する効率的な知識伝達方法
- Authors: Maciej A. Czyzewski, Daniel Nowak, Kamil Piechowiak
- Abstract要約: 本稿では,異なるアーキテクチャのニューラルネットワーク間でパラメータを転送する手法を提案する。
我々の手法はDPIATと呼ばれ、動的プログラミングを用いてアーキテクチャ間のブロックとレイヤをマッチングし、パラメータを効率的に転送する。
ImageNetの実験では,50時間後の平均1.6倍の検証精度が向上した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transfer learning is a popular technique for improving the performance of
neural networks. However, existing methods are limited to transferring
parameters between networks with same architectures. We present a method for
transferring parameters between neural networks with different architectures.
Our method, called DPIAT, uses dynamic programming to match blocks and layers
between architectures and transfer parameters efficiently. Compared to existing
parameter prediction and random initialization methods, it significantly
improves training efficiency and validation accuracy. In experiments on
ImageNet, our method improved validation accuracy by an average of 1.6 times
after 50 epochs of training. DPIAT allows both researchers and neural
architecture search systems to modify trained networks and reuse knowledge,
avoiding the need for retraining from scratch. We also introduce a network
architecture similarity measure, enabling users to choose the best source
network without any training.
- Abstract(参考訳): 転送学習は、ニューラルネットワークの性能を向上させるための一般的なテクニックである。
しかし、既存の手法は同一アーキテクチャのネットワーク間のパラメータ転送に限られている。
本稿では,異なるアーキテクチャのニューラルネットワーク間でパラメータを転送する手法を提案する。
我々の手法はDPIATと呼ばれ、動的プログラミングを用いてアーキテクチャ間のブロックとレイヤをマッチングし、パラメータを効率的に転送する。
既存のパラメータ予測やランダム初期化手法と比較して、トレーニング効率と検証精度が大幅に向上する。
ImageNetの実験では,50時間後の平均1.6倍の検証精度が向上した。
DPIATは、研究者とニューラルアーキテクチャ検索システムの両方がトレーニングされたネットワークを変更し、知識を再利用することを可能にする。
また,ネットワークアーキテクチャの類似性尺度を導入し,ユーザがトレーニングなしで最適なソースネットワークを選択できるようにする。
関連論文リスト
- Learning Morphisms with Gauss-Newton Approximation for Growing Networks [43.998746572276076]
ニューラル・アーキテクチャ・サーチ(NAS)の一般的な手法は、ネットワーク・アソシエーション(英語版)と呼ばれるネットワークのアーキテクチャへの小さな局所的な変更を通じてネットワークを成長させることに基づいている。
本稿では、損失関数のガウス・ニュートン近似を用いてネットワーク成長のためのNAS法を提案し、ネットワークの候補型を効率的に学習し評価する。
論文 参考訳(メタデータ) (2024-11-07T01:12:42Z) - Principled Architecture-aware Scaling of Hyperparameters [69.98414153320894]
高品質のディープニューラルネットワークをトレーニングするには、非自明で高価なプロセスである適切なハイパーパラメータを選択する必要がある。
本研究では,ネットワークアーキテクチャにおける初期化と最大学習率の依存性を正確に評価する。
ネットワークランキングは、ベンチマークのトレーニングネットワークにより容易に変更可能であることを実証する。
論文 参考訳(メタデータ) (2024-02-27T11:52:49Z) - Speeding Up EfficientNet: Selecting Update Blocks of Convolutional
Neural Networks using Genetic Algorithm in Transfer Learning [0.0]
パラメータを更新するための階層のブロックを選択する遺伝的アルゴリズムを考案する。
提案アルゴリズムは, 精度の点で, ベースラインと同等あるいは良質な結果が得られることを示す。
また、各ブロックの有効性を更新ブロックとして測定するブロック重要度と呼ばれる指標も考案した。
論文 参考訳(メタデータ) (2023-03-01T06:35:29Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - An Experimental Study of the Impact of Pre-training on the Pruning of a
Convolutional Neural Network [0.0]
近年、ディープニューラルネットワークは様々なアプリケーション領域で広く成功している。
ディープニューラルネットワークは通常、ネットワークの重みに対応する多数のパラメータを含む。
プルーニング法は特に、無関係な重みを識別して取り除くことにより、パラメータセットのサイズを減らそうとしている。
論文 参考訳(メタデータ) (2021-12-15T16:02:15Z) - SIRe-Networks: Skip Connections over Interlaced Multi-Task Learning and
Residual Connections for Structure Preserving Object Classification [28.02302915971059]
本稿では、オブジェクト分類タスクにおける消失勾配を低減するために、SIReを定義したインターレース型マルチタスク学習戦略を提案する。
提案手法は、自動エンコーダを介して入力画像構造を保存することにより、畳み込みニューラルネットワーク(CNN)を直接改善する。
提案手法を検証するため、SIRe戦略を介して単純なCNNと有名なネットワークの様々な実装を拡張し、CIFAR100データセットで広範囲にテストする。
論文 参考訳(メタデータ) (2021-10-06T13:54:49Z) - Joint Learning of Neural Transfer and Architecture Adaptation for Image
Recognition [77.95361323613147]
現在の最先端の視覚認識システムは、大規模データセット上でニューラルネットワークを事前トレーニングし、より小さなデータセットでネットワーク重みを微調整することに依存している。
本稿では,各ドメインタスクに適応したネットワークアーキテクチャの動的適応と,効率と効率の両面で重みの微調整の利点を実証する。
本手法は,ソースドメインタスクでスーパーネットトレーニングを自己教師付き学習に置き換え,下流タスクで線形評価を行うことにより,教師なしパラダイムに容易に一般化することができる。
論文 参考訳(メタデータ) (2021-03-31T08:15:17Z) - Learning Neural Network Subspaces [74.44457651546728]
近年の観測は,ニューラルネットワーク最適化の展望の理解を深めている。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
論文 参考訳(メタデータ) (2021-02-20T23:26:58Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
そこで我々は,局所的批判訓練と呼ばれる新しいモデル並列学習手法を提案する。
提案手法は,畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)の両方において,階層群の更新プロセスの分離に成功したことを示す。
また,提案手法によりトレーニングされたネットワークを構造最適化に利用できることを示す。
論文 参考訳(メタデータ) (2021-02-03T09:30:45Z) - Multi-fidelity Neural Architecture Search with Knowledge Distillation [69.09782590880367]
ニューラルアーキテクチャ探索のためのベイズ的多重忠実度法 MF-KD を提案する。
知識蒸留は損失関数に追加され、ネットワークが教師ネットワークを模倣することを強制する用語となる。
このような変化した損失関数を持ついくつかのエポックに対するトレーニングは、ロジスティックな損失を持ついくつかのエポックに対するトレーニングよりも、より優れたニューラルアーキテクチャの選択につながることを示す。
論文 参考訳(メタデータ) (2020-06-15T12:32:38Z) - A Hybrid Method for Training Convolutional Neural Networks [3.172761915061083]
本稿では,畳み込みニューラルネットワークの学習にバックプロパゲーションと進化戦略の両方を用いるハイブリッド手法を提案する。
画像分類のタスクにおいて,提案手法は定期的な訓練において改善可能であることを示す。
論文 参考訳(メタデータ) (2020-04-15T17:52:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。