論文の概要: RFold: RNA Secondary Structure Prediction with Decoupled Optimization
- arxiv url: http://arxiv.org/abs/2212.14041v3
- Date: Fri, 24 May 2024 12:05:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 00:35:17.290449
- Title: RFold: RNA Secondary Structure Prediction with Decoupled Optimization
- Title(参考訳): RFold:脱結合最適化によるRNA二次構造予測
- Authors: Cheng Tan, Zhangyang Gao, Hanqun Cao, Xingran Chen, Ge Wang, Lirong Wu, Jun Xia, Jiangbin Zheng, Stan Z. Li,
- Abstract要約: RFoldは、与えられたシーケンスから最もよく一致するK-Rook解を予測する方法である。
RFoldは、最先端のアプローチよりも競争性能とおよそ8倍の推論効率を達成する。
- 参考スコア(独自算出の注目度): 63.3632827588974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The secondary structure of ribonucleic acid (RNA) is more stable and accessible in the cell than its tertiary structure, making it essential for functional prediction. Although deep learning has shown promising results in this field, current methods suffer from poor generalization and high complexity. In this work, we reformulate the RNA secondary structure prediction as a K-Rook problem, thereby simplifying the prediction process into probabilistic matching within a finite solution space. Building on this innovative perspective, we introduce RFold, a simple yet effective method that learns to predict the most matching K-Rook solution from the given sequence. RFold employs a bi-dimensional optimization strategy that decomposes the probabilistic matching problem into row-wise and column-wise components to reduce the matching complexity, simplifying the solving process while guaranteeing the validity of the output. Extensive experiments demonstrate that RFold achieves competitive performance and about eight times faster inference efficiency than the state-of-the-art approaches. The code and Colab demo are available in \href{http://github.com/A4Bio/RFold}{http://github.com/A4Bio/RFold}.
- Abstract(参考訳): リボ核酸(RNA)の二次構造は、その第3次構造よりも安定しており、細胞内でアクセスしやすく、機能的な予測に不可欠である。
ディープラーニングはこの分野で有望な結果を示しているが、現在の手法は一般化の貧弱さと複雑さに悩まされている。
本研究では,RNA二次構造予測をK-Rook問題として再構成し,その予測プロセスを有限解空間内での確率的マッチングに単純化する。
この革新的な観点から、与えられたシーケンスから最も一致するK-Rook解を予測するための、単純で効果的な方法であるRFoldを導入する。
RFoldは、確率的マッチング問題を行ワイドおよび列ワイドのコンポーネントに分解して、マッチングの複雑さを低減し、出力の有効性を保証しながら解決プロセスを簡素化する2次元最適化戦略を採用している。
RFoldは最先端の手法よりも競争性能と推論効率を約8倍に向上することを示した。
コードとColabのデモは \href{http://github.com/A4Bio/RFold}{http://github.com/A4Bio/RFold} で公開されている。
関連論文リスト
- CoRMF: Criticality-Ordered Recurrent Mean Field Ising Solver [4.364088891019632]
我々は、RNNに基づく効率的なIsingモデル解法、Criticality-ordered Recurrent Mean Field (CoRMF)を提案する。
基礎となるIsingグラフの近似木構造を利用することで、新しく得られた臨界度順序は、変動平均場とRNNの統一を可能にする。
CoRFMはデータ/証拠のない自己学習方式でIsing問題を解き、RNNから直接サンプリングすることで推論タスクを実行することができる。
論文 参考訳(メタデータ) (2024-03-05T16:55:06Z) - Asymptotically Unbiased Instance-wise Regularized Partial AUC
Optimization: Theory and Algorithm [101.44676036551537]
One-way partial AUC (OPAUC) と Two-way partial AUC (TPAUC) はバイナリ分類器の平均性能を測定する。
既存の手法のほとんどはPAUCをほぼ最適化するしかなく、制御不能なバイアスにつながる。
本稿では,分散ロバスト最適化AUCによるPAUC問題の簡易化について述べる。
論文 参考訳(メタデータ) (2022-10-08T08:26:22Z) - A QUBO model of the RNA folding problem optimized by variational hybrid
quantum annealing [0.0]
本稿では, 量子アニールと回路モデル量子コンピュータの両方に有効なRNA折り畳み問題のモデルを提案する。
この定式化を、既知のRNA構造に対して全てのパラメータを調整した後、現在のRNA折り畳みQUBOと比較する。
論文 参考訳(メタデータ) (2022-08-08T19:04:28Z) - E2Efold-3D: End-to-End Deep Learning Method for accurate de novo RNA 3D
Structure Prediction [46.38735421190187]
E2Efold-3Dというエンド・ツー・エンドの深層学習手法を開発し,テクスタイド・ノボRNA構造予測を精度良く行う。
完全微分可能なエンドツーエンドパイプライン、二次構造による自己蒸留、パラメータ効率のよいバックボーンの定式化など、データ不足を克服するために、いくつかの新しいコンポーネントが提案されている。
論文 参考訳(メタデータ) (2022-07-04T17:15:35Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
本研究では,データ駆動型生成ネットワークを用いたタンパク質構造最適化手法を提案する。
EBM-Foldアプローチは,従来のロゼッタ構造最適化ルーチンと比較して,高品質なデコイを効率よく生成できる。
論文 参考訳(メタデータ) (2021-05-11T03:40:29Z) - AIN: Fast and Accurate Sequence Labeling with Approximate Inference
Network [75.44925576268052]
線形鎖条件ランダム場(CRF)モデルは最も広く使われているニューラルネットワークラベリング手法の1つである。
厳密な確率的推論アルゴリズムは典型的にはCRFモデルの訓練と予測段階に適用される。
CRFモデルに対して並列化可能な近似変分推論アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-17T12:18:43Z) - RNA Secondary Structure Prediction By Learning Unrolled Algorithms [70.09461537906319]
本稿では,RNA二次構造予測のためのエンド・ツー・エンドのディープラーニングモデルであるE2Efoldを提案する。
E2Efoldの鍵となる考え方は、RNA塩基対行列を直接予測し、制約のないプログラミングを、制約を強制するための深いアーキテクチャのテンプレートとして使うことである。
ベンチマークデータセットに関する包括的な実験により、E2Efoldの優れた性能を実証する。
論文 参考訳(メタデータ) (2020-02-13T23:21:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。