論文の概要: Provable Robust Saliency-based Explanations
- arxiv url: http://arxiv.org/abs/2212.14106v4
- Date: Thu, 26 Dec 2024 02:37:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:23:18.372662
- Title: Provable Robust Saliency-based Explanations
- Title(参考訳): 確率ロバスト・サリエンシに基づく説明
- Authors: Chao Chen, Chenghua Guo, Rufeng Chen, Guixiang Ma, Ming Zeng, Xiangwen Liao, Xi Zhang, Sihong Xie,
- Abstract要約: 上位$kの有能な特徴の安定性を評価するための新しい指標を導入する。
本稿では、効率的な正則化器による安定的な説明を訓練するR2ETを紹介する。
我々は多目的最適化によりR2ETを解析し、説明の数値的および統計的安定性を証明した。
- 参考スコア(独自算出の注目度): 15.471415695449023
- License:
- Abstract: To foster trust in machine learning models, explanations must be faithful and stable for consistent insights. Existing relevant works rely on the $\ell_p$ distance for stability assessment, which diverges from human perception. Besides, existing adversarial training (AT) associated with intensive computations may lead to an arms race. To address these challenges, we introduce a novel metric to assess the stability of top-$k$ salient features. We introduce R2ET which trains for stable explanation by efficient and effective regularizer, and analyze R2ET by multi-objective optimization to prove numerical and statistical stability of explanations. Moreover, theoretical connections between R2ET and certified robustness justify R2ET's stability in all attacks. Extensive experiments across various data modalities and model architectures show that R2ET achieves superior stability against stealthy attacks, and generalizes effectively across different explanation methods.
- Abstract(参考訳): 機械学習モデルの信頼性を高めるためには、一貫した洞察のために、説明は忠実で安定していなければならない。
既存の関連する研究は、人間の知覚から分岐する安定性評価のための$\ell_p$距離に依存している。
さらに、集約的な計算に関連する既存の敵の訓練(AT)は、軍備競争に繋がる可能性がある。
これらの課題に対処するために、トップ$kの有能な機能の安定性を評価するための新しい指標を導入する。
効率的な正則化による安定な説明を訓練するR2ETを導入し、多目的最適化によりR2ETを分析し、説明の数値的および統計的安定性を示す。
さらに、R2ETと認証されたロバスト性の間の理論的接続は、すべての攻撃におけるR2ETの安定性を正当化する。
様々なデータモダリティとモデルアーキテクチャにわたる大規模な実験により、R2ETはステルス攻撃に対して優れた安定性を達成し、様々な説明手法を効果的に一般化することを示した。
関連論文リスト
- RbFT: Robust Fine-tuning for Retrieval-Augmented Generation against Retrieval Defects [12.5122702720856]
本稿では,検索欠陥に対する大規模言語モデルのレジリエンスを高めるために,Robust Fine-Tuning (RbFT)を提案する。
実験の結果,RbFTは多様な検索条件におけるRAGシステムのロバスト性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2025-01-30T14:15:09Z) - Stability Evaluation via Distributional Perturbation Analysis [28.379994938809133]
分布摂動に基づく安定性評価基準を提案する。
我々の安定性評価基準は,エフェダデータの腐敗とエフェサブ人口シフトの両方に対処できる。
実証実験により,現実のアプリケーションにまたがる安定性評価基準の実用性を検証する。
論文 参考訳(メタデータ) (2024-05-06T06:47:14Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
本稿では,2重のインスタンス再重み付き対向フレームワークを提案する。
KL偏差正規化損失関数の最適化により重みを求める。
提案手法は, 平均ロバスト性能において, 最先端のベースライン法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-01T06:16:18Z) - A Stability Analysis of Fine-Tuning a Pre-Trained Model [46.6761331971071]
訓練済みモデルの微調整は、最近のNLP研究で最も有望なパラダイムの1つである。
微調整は不安定な問題、すなわち同じ設定で同じモデルをチューニングすることで、性能が著しく異なる。
本稿では,2つの一般的な設定に焦点をあてたファインチューニングの理論的安定性解析を提案する。
論文 参考訳(メタデータ) (2023-01-24T05:11:17Z) - Explicit Tradeoffs between Adversarial and Natural Distributional
Robustness [48.44639585732391]
実際、モデルは信頼性を確保するために両方のタイプの堅牢さを享受する必要があります。
本研究では, 対角線と自然分布の強靭性の間には, 明らかなトレードオフが存在することを示す。
論文 参考訳(メタデータ) (2022-09-15T19:58:01Z) - Adversarial Robustness under Long-Tailed Distribution [93.50792075460336]
敵対的ロバスト性はディープネットワークの脆弱性と本質的特徴を明らかにすることで近年広く研究されている。
本研究では,長尾分布下における敵対的脆弱性と防御について検討する。
我々は、スケール不変とデータ再分散という2つの専用モジュールからなるクリーンで効果的なフレームワークであるRoBalを提案する。
論文 参考訳(メタデータ) (2021-04-06T17:53:08Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Reliable Post hoc Explanations: Modeling Uncertainty in Explainability [44.9824285459365]
ブラックボックスの説明は、高レベルの設定でモデルの信頼性を確立するために、ますます採用されている。
先行研究では、最先端の技術が生み出す説明は一貫性がなく不安定であり、その正確性や信頼性についての洞察はほとんど得られないことが示されている。
局所的な説明と関連する不確実性を生成するための新しいベイズ的枠組みを開発する。
論文 参考訳(メタデータ) (2020-08-11T22:52:21Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
経験値関数の新しい正規化器を導入し、ワッサーシュタイン分布のロバストな値関数を下限とすることを示す。
強化学習における$textitexternalな不確実性に対処するための実用的なツールとして正規化を使用することを提案する。
論文 参考訳(メタデータ) (2020-03-05T19:56:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。