Scalable deterministic integration of two quantum dots into an on-chip
quantum circuit
- URL: http://arxiv.org/abs/2212.14257v1
- Date: Thu, 29 Dec 2022 11:04:53 GMT
- Title: Scalable deterministic integration of two quantum dots into an on-chip
quantum circuit
- Authors: Shulun Li, Yuhui Yang, Johannes Schall, Martin von Helversen, Chirag
Palekar, Hanqing Liu, L\'eo Roche, Sven Rodt, Haiqiao Ni, Yu Zhang, Zhichuan
Niu, Stephan Reitzenstein
- Abstract summary: Integrated quantum photonic circuits (IQPCs) with deterministically integrated quantum emitters are critical elements for scalable quantum information applications.
We report on a monolithic prototype IQPC consisting of two pre-selected quantum dots deterministically integrated into nanobeam cavities at the input ports of a 2x2 multimode interference beam-splitter.
- Score: 2.6542279914590465
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrated quantum photonic circuits (IQPCs) with deterministically
integrated quantum emitters are critical elements for scalable quantum
information applications and have attracted significant attention in recent
years. However, scaling up them towards fully functional photonic circuits with
multiple deterministically integrated quantum emitters to generate photonic
input states remains a great challenge. In this work, we report on a monolithic
prototype IQPC consisting of two pre-selected quantum dots deterministically
integrated into nanobeam cavities at the input ports of a 2x2 multimode
interference beam-splitter. The on-chip beam splitter exhibits a splitting
ratio of nearly 50/50 and the integrated quantum emitters have high
single-photon purity, enabling on-chip HBT experiments, depicting deterministic
scalability. Overall, this marks a cornerstone toward scalable and
fully-functional IQPCs.
Related papers
- A quantum-network register assembled with optical tweezers in an optical cavity [0.0]
Quantum computation and quantum communication are expected to provide users with capabilities inaccessible by classical physics.
One solution is to develop a quantum network consisting of small-scale quantum registers containing computation qubits.
We report on a register that uses both optical tweezers and optical lattices to deterministically assemble a two-dimensional array of atoms in an optical cavity.
arXiv Detail & Related papers (2024-07-12T09:20:57Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - On-chip quantum interference between independent lithium niobate-on-insulator photon-pair sources [35.310629519009204]
A lithium niobate-on-insulator (LNOI) integrated photonic circuit generates a two-photon path-entangled state, and a programmable interferometer for quantum interference.
We generate entangled photons with $sim2.3times108$ pairs/s/mW brightness and perform quantum interference experiments on the chip with $96.8pm3.6%$ visibility.
Our results provide a path towards large-scale integrated quantum photonics including efficient photon-pair generation and programmable circuits for applications such as boson sampling and quantum communications.
arXiv Detail & Related papers (2024-04-12T10:24:43Z) - Controlling the Photon Number Coherence of Solid-state Quantum Light
Sources for Quantum Cryptography [0.0]
Quantum communication networks rely on quantum cryptographic protocols including quantum key distribution (QKD) using single photons.
A critical element regarding the security of QKD protocols is the photon number coherence (PNC)
We exploit two-photon excitation of a quantum dot combined with a stimulation pulse to generate on-demand single photons with high purity and indistinguishability.
arXiv Detail & Related papers (2023-05-31T16:46:00Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - On-chip Hong-Ou-Mandel interference from separate quantum dot emitters
in an integrated circuit [0.3096919150448224]
We show a fully monolithic GaAs circuit combing two frequency-matched quantum dot single-photon sources interconnected with a low-loss on-chip beamsplitter connected via single-mode ridge waveguides.
This device enabled us to perform a two-photon interference experiment on-chip with visibility reaching 66%, limited by the coherence of the emitters.
arXiv Detail & Related papers (2023-01-04T17:03:04Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Single photon emission from individual nanophotonic-integrated colloidal
quantum dots [45.82374977939355]
Solution processible colloidal quantum dots hold great promise for realizing single-photon sources embedded into scalable quantum technology platforms.
We report on integrating individual colloidal core-shell quantum dots into a nanophotonic network that allows for excitation and efficient collection of single-photons via separate waveguide channels.
arXiv Detail & Related papers (2021-04-23T22:14:17Z) - Deterministic photonic quantum computation in a synthetic time dimension [0.483420384410068]
We propose a scalable architecture for a photonic quantum computer.
The proposed device has a machine size which is independent of quantum circuit depth.
It does not require single-photon detectors, operates deterministically, and is robust to experimental imperfections.
arXiv Detail & Related papers (2021-01-19T18:59:18Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - 128 Identical Quantum Sources Integrated on a Single Silica Chip [9.023058106086548]
Integrated photonic chip offers an elegant way to construct large-scale quantum systems.
We experimentally demonstrate 128 identical quantum sources integrated on a single silica chip.
arXiv Detail & Related papers (2020-05-26T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.