Twitter's Agenda-Setting Role: A Study of Twitter Strategy for Political
Diversion
- URL: http://arxiv.org/abs/2212.14672v1
- Date: Fri, 16 Dec 2022 11:34:49 GMT
- Title: Twitter's Agenda-Setting Role: A Study of Twitter Strategy for Political
Diversion
- Authors: Yuyang Chen, Xiaoyu Cui, Yunjie Song, Manli Wu
- Abstract summary: This study verified the effectiveness of Donald Trump's Twitter campaign in guiding agen-da-setting and deflecting political risk.
We collected all tweets posted by Trump on the Twitter platform from January 1, 2020 to December 31, 2020.
Empirical analysis revealed Twitter's strategy is used to divert public attention from negative Covid-19 reports during the epidemic.
- Score: 2.129609835555137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study verified the effectiveness of Donald Trump's Twitter campaign in
guiding agen-da-setting and deflecting political risk and examined Trump's
Twitter communication strategy and explores the communication effects of his
tweet content during Covid-19 pandemic. We collected all tweets posted by Trump
on the Twitter platform from January 1, 2020 to December 31, 2020.We used
Ordinary Least Squares (OLS) regression analysis with a fixed effects model to
analyze the existence of the Twitter strategy. The correlation between the
number of con-firmed daily Covid-19 diagnoses and the number of particular
thematic tweets was investigated using time series analysis. Empirical analysis
revealed Twitter's strategy is used to divert public attention from negative
Covid-19 reports during the epidemic, and it posts a powerful political
communication effect on Twitter. However, findings suggest that Trump did not
use false claims to divert political risk and shape public opinion.
Related papers
- Russo-Ukrainian War: Prediction and explanation of Twitter suspension [47.61306219245444]
This study focuses on the Twitter suspension mechanism and the analysis of shared content and features of user accounts that may lead to this.
We have obtained a dataset containing 107.7M tweets, originating from 9.8 million users, using Twitter API.
Our results reveal scam campaigns taking advantage of trending topics regarding the Russia-Ukrainian conflict for Bitcoin fraud, spam, and advertisement campaigns.
arXiv Detail & Related papers (2023-06-06T08:41:02Z) - Design and analysis of tweet-based election models for the 2021 Mexican
legislative election [55.41644538483948]
We use a dataset of 15 million election-related tweets in the six months preceding election day.
We find that models using data with geographical attributes determine the results of the election with better precision and accuracy than conventional polling methods.
arXiv Detail & Related papers (2023-01-02T12:40:05Z) - Predicting Hate Intensity of Twitter Conversation Threads [26.190359413890537]
We propose DRAGNET++, which aims to predict the intensity of hatred that a tweet can bring in through its reply chain in the future.
It uses the semantic and propagating structure of the tweet threads to maximize the contextual information leading up to and the fall of hate intensity at each subsequent tweet.
We show that DRAGNET++ outperforms all the state-of-the-art baselines significantly.
arXiv Detail & Related papers (2022-06-16T18:51:36Z) - Political Communities on Twitter: Case Study of the 2022 French
Presidential Election [14.783829037950984]
We aim to identify political communities formed on Twitter during the 2022 French presidential election.
We create a large-scale Twitter dataset containing 1.2 million users and 62.6 million tweets that mention keywords relevant to the election.
We perform community detection on a retweet graph of users and propose an in-depth analysis of the stance of each community.
arXiv Detail & Related papers (2022-04-15T12:18:16Z) - Manipulating Twitter Through Deletions [64.33261764633504]
Research into influence campaigns on Twitter has mostly relied on identifying malicious activities from tweets obtained via public APIs.
Here, we provide the first exhaustive, large-scale analysis of anomalous deletion patterns involving more than a billion deletions by over 11 million accounts.
We find that a small fraction of accounts delete a large number of tweets daily.
First, limits on tweet volume are circumvented, allowing certain accounts to flood the network with over 26 thousand daily tweets.
Second, coordinated networks of accounts engage in repetitive likes and unlikes of content that is eventually deleted, which can manipulate ranking algorithms.
arXiv Detail & Related papers (2022-03-25T20:07:08Z) - Negativity Spreads Faster: A Large-Scale Multilingual Twitter Analysis
on the Role of Sentiment in Political Communication [7.136205674624813]
This paper attempts to analyse tweets of politicians from three European countries.
By utilising state-of-the-art pre-trained language models, we performed sentiment analysis on hundreds of thousands of tweets.
Our analysis indicates that politicians' negatively charged tweets spread more widely, especially in more recent times.
arXiv Detail & Related papers (2022-02-01T13:25:19Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
This paper focuses on the design of a novel system for identifying Twitter bots based on labeled Twitter data.
Supervised machine learning (ML) framework is adopted using an Extreme Gradient Boosting (XGBoost) algorithm.
Our study also deploys Shapley Additive Explanations (SHAP) for explaining the ML model predictions.
arXiv Detail & Related papers (2021-12-08T14:12:24Z) - Characterizing Online Engagement with Disinformation and Conspiracies in
the 2020 U.S. Presidential Election [9.63004143218094]
Persistent manipulation of social media has resulted in increased concerns regarding the 2020 U.S. Presidential Election.
We apply a detection model to separate factual from unreliable (or conspiratorial) claims analyzing a dataset of 242 million election-related tweets.
We characterize account engagements with unreliable and conspiracy tweets, and with the QAnon conspiracy group, by political leaning and tweet types.
arXiv Detail & Related papers (2021-07-17T22:11:13Z) - High-level Approaches to Detect Malicious Political Activity on Twitter [0.0]
We investigate a data snapshot taken on May 2020, with around 5 million accounts and over 120 million tweets.
The analyzed time period stretches from August 2019 to May 2020, with a focus on the Portuguese elections of October 6th, 2019.
We learn that Twitter's suspension patterns are not adequate to the type of political trolling found in the Portuguese Twittersphere.
arXiv Detail & Related papers (2021-02-04T22:54:44Z) - Understanding the Hoarding Behaviors during the COVID-19 Pandemic using
Large Scale Social Media Data [77.34726150561087]
We analyze the hoarding and anti-hoarding patterns of over 42,000 unique Twitter users in the United States from March 1 to April 30, 2020.
We find the percentage of females in both hoarding and anti-hoarding groups is higher than that of the general Twitter user population.
The LIWC anxiety mean for the hoarding-related tweets is significantly higher than the baseline Twitter anxiety mean.
arXiv Detail & Related papers (2020-10-15T16:02:25Z) - Russian trolls speaking Russian: Regional Twitter operations and MH17 [68.8204255655161]
In 2018, Twitter released data on accounts identified as Russian trolls.
We analyze the Russian-language operations of these trolls.
We find that trolls' information campaign on the MH17 crash was the largest in terms of tweet count.
arXiv Detail & Related papers (2020-05-13T19:48:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.