論文の概要: Unsupervised 4D LiDAR Moving Object Segmentation in Stationary Settings
with Multivariate Occupancy Time Series
- arxiv url: http://arxiv.org/abs/2212.14750v1
- Date: Fri, 30 Dec 2022 14:48:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 16:56:48.392671
- Title: Unsupervised 4D LiDAR Moving Object Segmentation in Stationary Settings
with Multivariate Occupancy Time Series
- Title(参考訳): 多変量占有時間系列をもつ静止環境における教師なし4次元lidar移動物体分割
- Authors: Thomas Kreutz, Max M\"uhlh\"auser, and Alejandro Sanchez Guinea
- Abstract要約: 静止センサから記録された4次元LiDARデータにおける非教師なし移動物体セグメンテーション(MOS)の問題に対処する。
教師なしMOSの問題を緩和する時系列に基づく新しい4次元LiDAR表現を提案する。
Raw KITTIデータセットによる静止シーンの実験では、完全に教師なしのアプローチが、教師付き最先端アプローチに匹敵するパフォーマンスを達成することが示された。
- 参考スコア(独自算出の注目度): 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we address the problem of unsupervised moving object
segmentation (MOS) in 4D LiDAR data recorded from a stationary sensor, where no
ground truth annotations are involved. Deep learning-based state-of-the-art
methods for LiDAR MOS strongly depend on annotated ground truth data, which is
expensive to obtain and scarce in existence. To close this gap in the
stationary setting, we propose a novel 4D LiDAR representation based on
multivariate time series that relaxes the problem of unsupervised MOS to a time
series clustering problem. More specifically, we propose modeling the change in
occupancy of a voxel by a multivariate occupancy time series (MOTS), which
captures spatio-temporal occupancy changes on the voxel level and its
surrounding neighborhood. To perform unsupervised MOS, we train a neural
network in a self-supervised manner to encode MOTS into voxel-level feature
representations, which can be partitioned by a clustering algorithm into moving
or stationary. Experiments on stationary scenes from the Raw KITTI dataset show
that our fully unsupervised approach achieves performance that is comparable to
that of supervised state-of-the-art approaches.
- Abstract(参考訳): 本研究では,静止センサから記録された4次元LiDARデータにおける非教師なし移動物体セグメンテーション(MOS)の問題に対処する。
深層学習に基づくLiDAR MOSの最先端の手法は、アノテートされた真実データに強く依存する。
静止環境におけるこのギャップを埋めるために,教師なしMOSの問題を時系列クラスタリング問題に緩和する多変量時系列に基づく新しい4次元LiDAR表現を提案する。
具体的には,voxelレベルとその周辺地域の時空間的占有変化を捉えた多変量占有時系列(mots)によるvoxelの占有率変化のモデル化を提案する。
教師なしのMOSを実行するために、ニューラルネットワークを自己教師された方法でトレーニングし、MOTSをボクセルレベルの特徴表現にエンコードし、クラスタリングアルゴリズムによって移動または静止に分割することができる。
Raw KITTIデータセットによる静止シーンの実験では、完全に教師なしのアプローチが、教師付き最先端アプローチに匹敵するパフォーマンスを達成することが示された。
関連論文リスト
- Deciphering Movement: Unified Trajectory Generation Model for Multi-Agent [53.637837706712794]
任意の軌道をマスク入力として処理する統一軌道生成モデルUniTrajを提案する。
具体的には,空間特徴抽出のためのトランスフォーマーエンコーダ内に埋め込まれたゴースト空間マスキング(GSM)モジュールを導入する。
バスケットボール-U,サッカー-U,サッカー-Uの3つの実用的なスポーツゲームデータセットをベンチマークして評価を行った。
論文 参考訳(メタデータ) (2024-05-27T22:15:23Z) - Semi-supervised Open-World Object Detection [74.95267079505145]
半教師付きオープンワールド検出(SS-OWOD)という,より現実的な定式化を導入する。
提案したSS-OWOD設定では,最先端OWOD検出器の性能が劇的に低下することが実証された。
我々は,MS COCO, PASCAL, Objects365, DOTAの4つのデータセットを用いた実験を行い, 提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-02-25T07:12:51Z) - Motion2VecSets: 4D Latent Vector Set Diffusion for Non-rigid Shape Reconstruction and Tracking [52.393359791978035]
Motion2VecSetsは点雲列からの動的表面再構成のための4次元拡散モデルである。
グローバルな潜在符号の代わりに、潜在集合で4Dダイナミクスをパラメータ化する。
時間的コヒーレントな物体追跡のために、変形潜在集合を同期的に認知し、複数のフレーム間で情報を交換する。
論文 参考訳(メタデータ) (2024-01-12T15:05:08Z) - InsMOS: Instance-Aware Moving Object Segmentation in LiDAR Data [13.196031553445117]
本稿では,3次元LiDARスキャンにおける移動物体のセグメント化という課題に対処する新しいネットワークを提案する。
提案手法は点雲の列を入力として利用し,それらを4次元ボクセルに定量化する。
我々は,4Dボクセルから運動特徴を抽出し,電流スキャンに注入するために,4Dスパース畳み込みを用いる。
論文 参考訳(メタデータ) (2023-03-07T14:12:52Z) - Optimal Transport for Change Detection on LiDAR Point Clouds [16.552050876277242]
空気中LiDARデータポイント間の教師なし変更検出は,取得システムからの空間的支持とノイズのアンマッチが困難である。
本稿では,2つの時間的支援による3次元LiDAR点の移動の計算に基づく教師なしアプローチを提案する。
本手法では,教師なしの階層分類が可能であり,従来の最先端の教師なし手法よりも有意な差で性能が向上する。
論文 参考訳(メタデータ) (2023-02-14T13:08:07Z) - Efficient Spatial-Temporal Information Fusion for LiDAR-Based 3D Moving
Object Segmentation [23.666607237164186]
本稿では,LiDAR-MOSの性能向上のために,空間時空間情報とLiDARスキャンの異なる表現モダリティを併用した新しいディープニューラルネットワークを提案する。
具体的には、まず、空間情報と時間情報とを別々に扱うために、レンジ画像に基づくデュアルブランチ構造を用いる。
また、3次元スパース畳み込みによるポイントリファインメントモジュールを使用して、LiDAR範囲の画像とポイントクラウド表現の両方からの情報を融合する。
論文 参考訳(メタデータ) (2022-07-05T17:59:17Z) - LiDAR-based 4D Panoptic Segmentation via Dynamic Shifting Network [56.71765153629892]
本稿では,ポイントクラウド領域における効果的な単視分割フレームワークとして機能する動的シフトネットワーク(DS-Net)を提案する。
提案するDS-Netは,両タスクの現在の最先端手法よりも優れた精度を実現する。
DS-Netを4次元パノプティカルLiDARセグメンテーションに拡張し、一列のLiDARフレーム上で時間的に統一されたインスタンスクラスタリングを行う。
論文 参考訳(メタデータ) (2022-03-14T15:25:42Z) - LiMoSeg: Real-time Bird's Eye View based LiDAR Motion Segmentation [8.184561295177623]
本稿では,光検出・ラング(LiDAR)データの動作セグメント化のための新しいリアルタイムアーキテクチャを提案する。
我々は2D Birdのアイビュー表現における2つの連続したLiDARデータをスキャンし、静的または移動としてピクセルワイズ分類を行う。
Nvidia Jetson Xavierという,一般的に使用されている自動車組み込みプラットフォーム上では,低レイテンシの8ミリ秒を実証する。
論文 参考訳(メタデータ) (2021-11-08T23:40:55Z) - Unsupervised Representation Learning for Time Series with Temporal
Neighborhood Coding [8.45908939323268]
非定常時系列に対する一般化可能な表現を学習するための自己教師型フレームワークを提案する。
我々のモチベーションは、時系列データの動的性質をモデル化する能力が特に有用である医療分野に起因している。
論文 参考訳(メタデータ) (2021-06-01T19:53:24Z) - SCRDet++: Detecting Small, Cluttered and Rotated Objects via
Instance-Level Feature Denoising and Rotation Loss Smoothing [131.04304632759033]
小さくて散らばった物体は実世界では一般的であり、検出は困難である。
本稿では,まず,物体検出にデノナイズするアイデアを革新的に紹介する。
機能マップ上のインスタンスレベルの記述は、小さくて散らばったオブジェクトの検出を強化するために行われる。
論文 参考訳(メタデータ) (2020-04-28T06:03:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。