Behave-XAI: Deep Explainable Learning of Behavioral Representational Data
- URL: http://arxiv.org/abs/2301.00016v2
- Date: Tue, 19 Mar 2024 16:07:14 GMT
- Title: Behave-XAI: Deep Explainable Learning of Behavioral Representational Data
- Authors: Rossi Kamal, Zuzana Kubincova,
- Abstract summary: We use explainable or human understandable AI for a behavioral mining scenario.
We first formulate the behavioral mining problem in deep convolutional neural network architecture.
Once the model is developed, explanations are presented in front of users.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: According to the latest trend of artificial intelligence, AI-systems needs to clarify regarding general,specific decisions,services provided by it. Only consumer is satisfied, with explanation , for example, why any classification result is the outcome of any given time. This actually motivates us using explainable or human understandable AI for a behavioral mining scenario, where users engagement on digital platform is determined from context, such as emotion, activity, weather, etc. However, the output of AI-system is not always systematically correct, and often systematically correct, but apparently not-perfect and thereby creating confusions, such as, why the decision is given? What is the reason underneath? In this context, we first formulate the behavioral mining problem in deep convolutional neural network architecture. Eventually, we apply a recursive neural network due to the presence of time-series data from users physiological and environmental sensor-readings. Once the model is developed, explanations are presented with the advent of XAI models in front of users. This critical step involves extensive trial with users preference on explanations over conventional AI, judgement of credibility of explanation.
Related papers
- Relevant Irrelevance: Generating Alterfactual Explanations for Image Classifiers [11.200613814162185]
In this paper, we demonstrate the feasibility of alterfactual explanations for black box image classifiers.
We show for the first time that it is possible to apply this idea to black box models based on neural networks.
arXiv Detail & Related papers (2024-05-08T11:03:22Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - How Well Do Feature-Additive Explainers Explain Feature-Additive
Predictors? [12.993027779814478]
We ask the question: can popular feature-additive explainers (e.g., LIME, SHAP, SHAPR, MAPLE, and PDP) explain feature-additive predictors?
Herein, we evaluate such explainers on ground truth that is analytically derived from the additive structure of a model.
Our results suggest that all explainers eventually fail to correctly attribute the importance of features, especially when a decision-making process involves feature interactions.
arXiv Detail & Related papers (2023-10-27T21:16:28Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
The emphasis of XAI research appears to have turned to a more pragmatic explanation approach for better understanding.
An extensive area where cognitive science research may substantially influence XAI advancements is evaluating user knowledge and feedback.
We propose a framework to experiment with generating and evaluating the explanations on the grounds of different cognitive levels of understanding.
arXiv Detail & Related papers (2022-10-31T19:20:22Z) - On Explainability in AI-Solutions: A Cross-Domain Survey [4.394025678691688]
In automatically deriving a system model, AI algorithms learn relations in data that are not detectable for humans.
The more complex a model, the more difficult it is for a human to understand the reasoning for the decisions.
This work provides an extensive survey of literature on this topic, which, to a large part, consists of other surveys.
arXiv Detail & Related papers (2022-10-11T06:21:47Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
We present a user-centered persona concept to evaluate explainable AI (XAI)
Results show that users' demographics and personality, as well as the type of explanation, impact explanation preferences.
Our insights bring an interactive, human-centered XAI closer to practical application.
arXiv Detail & Related papers (2022-10-07T12:51:27Z) - Alterfactual Explanations -- The Relevance of Irrelevance for Explaining
AI Systems [0.9542023122304099]
We argue that in order to fully understand a decision, not only knowledge about relevant features is needed, but that the awareness of irrelevant information also highly contributes to the creation of a user's mental model of an AI system.
Our approach, which we call Alterfactual Explanations, is based on showing an alternative reality where irrelevant features of an AI's input are altered.
We show that alterfactual explanations are suited to convey an understanding of different aspects of the AI's reasoning than established counterfactual explanation methods.
arXiv Detail & Related papers (2022-07-19T16:20:37Z) - Machine Common Sense [77.34726150561087]
Machine common sense remains a broad, potentially unbounded problem in artificial intelligence (AI)
This article deals with the aspects of modeling commonsense reasoning focusing on such domain as interpersonal interactions.
arXiv Detail & Related papers (2020-06-15T13:59:47Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z) - Self-explaining AI as an alternative to interpretable AI [0.0]
Double descent indicates that deep neural networks operate by smoothly interpolating between data points.
Neural networks trained on complex real world data are inherently hard to interpret and prone to failure if asked to extrapolate.
Self-explaining AIs are capable of providing a human-understandable explanation along with confidence levels for both the decision and explanation.
arXiv Detail & Related papers (2020-02-12T18:50:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.