論文の概要: Preface: Characterisation of Physical Processes from Anomalous Diffusion
Data
- arxiv url: http://arxiv.org/abs/2301.00800v1
- Date: Mon, 2 Jan 2023 18:44:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-03 16:06:48.636734
- Title: Preface: Characterisation of Physical Processes from Anomalous Diffusion
Data
- Title(参考訳): 序文 異常拡散データによる物理過程の特徴付け
- Authors: Carlo Manzo and Gorka Mu\~noz-Gil and Giovanni Volpe and Miguel Angel
Garcia-March and Maciej Lewenstein and Ralf Metzler
- Abstract要約: 異常拡散データからの物理過程のキャラクタライゼーション」特集号によせて
特別号に含まれる記事のリストはhttps://iopscience.iop.org/journal/1751-8121/page/Characterisation-of-Physical-Processes-from-Anomal ous-Diffusion-Dataで参照することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Preface to the special issue "Characterisation of Physical Processes from
Anomalous Diffusion Data" associated with the Anomalous Diffusion Challenge (
https://andi-challenge.org ) and published in Journal of Physics A:
Mathematical and Theoretical. The list of articles included in the special
issue can be accessed at
https://iopscience.iop.org/journal/1751-8121/page/Characterisation-of-Physical-Processes-from-Anomal ous-Diffusion-Data .
- Abstract(参考訳): Anomalous Diffusion Challenge (https://andi-challenge.org ) の特集「異常拡散データからの物理過程のキャラクタライゼーション」によせて、Journal of Physics A: Mathematical and Theory に掲載されている。
特別号に含まれる記事のリストはhttps://iopscience.iop.org/journal/1751-8121/page/Characterisation-of-Physical-Processes-from-Anomal ous-Diffusion-Dataで参照することができる。
関連論文リスト
- Unlocking Potential Binders: Multimodal Pretraining DEL-Fusion for Denoising DNA-Encoded Libraries [51.72836644350993]
マルチモーダルプレトレーニング DEL-Fusion Model (MPDF)
我々は,異なる複合表現とそれらのテキスト記述の対比対象を適用した事前学習タスクを開発する。
本稿では, 原子, 分子, 分子レベルでの複合情報をアマルガメートする新しいDEL融合フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-07T17:32:21Z) - Physics-Informed Neural Networks for Dynamic Process Operations with Limited Physical Knowledge and Data [38.39977540117143]
化学工学では、プロセスデータを取得するのが高価であり、複雑な現象を完全にモデル化することは困難である。
特に、直接データも観測方程式も利用できない状態の推定に焦点をあてる。
実験データが少ない場合, PINNはプロセスのモデリングが可能であり, 部分的には機械的記述しか知られていないことを示す。
論文 参考訳(メタデータ) (2024-06-03T16:58:17Z) - CLEVRER-Humans: Describing Physical and Causal Events the Human Way [55.44915246065028]
CLEVRER-Humansベンチマークは,人間ラベルを用いた物理的事象の因果判定のためのビデオデータセットである。
まず、ビデオ内のイベントを新たに表現するための、新しい反復的なイベントクローゼタスク、すなわち、Causal Event Graphs (CEGs) と呼ぶもので、第2に、ニューラルネットワーク生成モデルに基づくデータ拡張技術である。
論文 参考訳(メタデータ) (2023-10-05T16:09:48Z) - Combining Variational Autoencoders and Physical Bias for Improved
Microscopy Data Analysis [0.0]
本稿では,データ内の変数の因子を分散させる物理拡張機械学習手法を提案する。
本手法はNiO-LSMO, BiFeO3, グラフェンなど様々な材料に適用される。
その結果,大量の画像データから有意な情報を抽出する手法の有効性が示された。
論文 参考訳(メタデータ) (2023-02-08T17:35:38Z) - Maximizing information from chemical engineering data sets: Applications
to machine learning [61.442473332320176]
化学工学の応用において、古典的な人工知能のアプローチを適用するのが難しくなる4つの特徴を同定する。
それぞれのデータ特性について、これらのデータ特性が生じるアプリケーションについて論じ、現在の化学工学研究が、これらの課題を組み込むために、データサイエンスと機械学習の分野をどのように拡張しているかを示す。
論文 参考訳(メタデータ) (2022-01-25T01:25:45Z) - Analytical Modelling of Exoplanet Transit Specroscopy with Dimensional
Analysis and Symbolic Regression [68.8204255655161]
ディープラーニング革命は、そのような分析結果を直接、データに適合するコンピュータアルゴリズムで導き出すための扉を開いた。
我々は、一般的なホットジュピター系外惑星の遷移半径の合成データにおける記号回帰の利用をうまく実証した。
前処理のステップとして,変数の無次元な組み合わせを特定するために次元解析を用いる。
論文 参考訳(メタデータ) (2021-12-22T00:52:56Z) - Efficient recurrent neural network methods for anomalously diffusing
single particle short and noisy trajectories [0.08594140167290096]
本稿では, 異常指数を推定し, 単一, 雑音, 短軌跡の背後にある異常拡散過程のタイプを同定できるデータ駆動方式を提案する。
畳み込みニューラルネットワークと繰り返しニューラルネットワークを組み合わせることで、最先端の結果が得られた。
論文 参考訳(メタデータ) (2021-08-05T20:04:37Z) - WaveNet-Based Deep Neural Networks for the Characterization of Anomalous
Diffusion (WADNet) [0.0]
異常拡散は物理的、化学的、生物学的、経済的システムの進化に関与している。
この課題は,単一軌跡評価のための新しいアプローチを客観的に評価し,比較することを目的としている。
We developed a WaveNet-based Deep Neural Network (WADNet) by using a modified WaveNet encoder with long short-term memory network。
論文 参考訳(メタデータ) (2021-06-14T19:41:15Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Augmenting Physical Models with Deep Networks for Complex Dynamics
Forecasting [34.61959169976758]
APHYNITYは、深層データ駆動モデルを持つ微分方程式によって記述された不完全な物理力学を増大させる原理的なアプローチである。
これは、動的を2つのコンポーネントに分解することで構成されます。物理コンポーネントは、事前の知識を持つダイナミクスを、データ駆動コンポーネントは、物理モデルのエラーを説明します。
論文 参考訳(メタデータ) (2020-10-09T09:31:03Z) - ESPRIT: Explaining Solutions to Physical Reasoning Tasks [106.77019206219984]
ESPRITは自然言語における定性的物理学に関する常識推論のためのフレームワークである。
我々のフレームワークは、エージェントや人間が容易に解を推論できるように、物理的シミュレーションがどのように因果的に進化するかを説明することを学ぶ。
人間の評価は、ESPRITが重要な微細な細部を生み出し、人間のアノテーションよりも物理的な概念を高い範囲でカバーしていることを示している。
論文 参考訳(メタデータ) (2020-05-02T07:03:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。