論文の概要: Conditional physics informed neural networks
- arxiv url: http://arxiv.org/abs/2104.02741v1
- Date: Tue, 6 Apr 2021 18:29:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-08 12:36:17.022003
- Title: Conditional physics informed neural networks
- Title(参考訳): 条件物理学インフォームドニューラルネットワーク
- Authors: Alexander Kovacs, Lukas Exl, Alexander Kornell, Johann Fischbacher,
Markus Hovorka, Markus Gusenbauer, Leoni Breth, Harald Oezelt, Masao Yano,
Noritsugu Sakuma, Akihito Kinoshita, Tetsuya Shoji, Akira Kato, Thomas
Schrefl
- Abstract要約: 固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
- 参考スコア(独自算出の注目度): 85.48030573849712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce conditional PINNs (physics informed neural networks) for
estimating the solution of classes of eigenvalue problems. The concept of PINNs
is expanded to learn not only the solution of one particular differential
equation but the solutions to a class of problems. We demonstrate this idea by
estimating the coercive field of permanent magnets which depends on the width
and strength of local defects. When the neural network incorporates the physics
of magnetization reversal, training can be achieved in an unsupervised way.
There is no need to generate labeled training data. The presented test cases
have been rigorously studied in the past. Thus, a detailed and easy comparison
with analytical solutions is made. We show that a single deep neural network
can learn the solution of partial differential equations for an entire class of
problems.
- Abstract(参考訳): 固有値問題の解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を導入する。
PINNの概念は、特定の微分方程式の解だけでなく、問題のクラスに対する解を学ぶために拡張される。
局所欠陥の幅と強度に依存する永久磁石の保磁力場を推定することで,この概念を実証する。
ニューラルネットワークが磁化反転の物理を組み込んだ場合、教師なしの方法でトレーニングを実現することができる。
ラベル付きトレーニングデータを生成する必要はありません。
提示されたテストケースは過去に厳格に研究されてきた。
そこで,解析解との比較を詳細に,簡便に行う。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
関連論文リスト
- The Unreasonable Effectiveness of Solving Inverse Problems with Neural Networks [24.766470360665647]
逆問題に対する解を学ぶために訓練されたニューラルネットワークは、トレーニングセット上でも古典よりも優れた解を見つけることができることを示す。
高速な推論のために新しいデータに一般化するのではなく、既知のデータに対するより良い解決策を見つけるためにも使用できる。
論文 参考訳(メタデータ) (2024-08-15T12:38:10Z) - Improving PINNs By Algebraic Inclusion of Boundary and Initial Conditions [0.1874930567916036]
AI for Science」は、AI技術を用いた基本的な科学的問題を解決することを目的としている。
本研究では、トレーニング対象のモデルを単にニューラルネットワークから非線形変換に変更する可能性について検討する。
これにより、損失関数の項数は標準のPINN損失よりも減少する。
論文 参考訳(メタデータ) (2024-07-30T11:19:48Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Evaluating Error Bound for Physics-Informed Neural Networks on Linear
Dynamical Systems [1.2891210250935146]
本稿では、微分方程式の線形系のクラスで訓練された物理インフォームドニューラルネットワークに対して、数学的に明示的な誤差境界を導出できることを示す。
我々の研究は、損失関数として知られ、使われているネットワーク残基と、一般には知られていない解の絶対誤差とのリンクを示す。
論文 参考訳(メタデータ) (2022-07-03T20:23:43Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
我々は、PINNを正しい解に収束させるため、解区間を徐々に拡大することを提案する。
すべてのアンサンブルのメンバーは、観測されたデータの近くで同じ解に収束する。
提案手法は, 得られた解の精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:05:34Z) - Physics-Informed Neural Networks for Quantum Eigenvalue Problems [1.2891210250935146]
固有値問題は、科学と工学のいくつかの分野において重要な問題である。
我々は、教師なしニューラルネットワークを用いて、微分固有値問題に対する固有関数と固有値を発見する。
ネットワーク最適化はデータフリーであり、ニューラルネットワークの予測にのみ依存する。
論文 参考訳(メタデータ) (2022-02-24T18:29:39Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Learning in Sinusoidal Spaces with Physics-Informed Neural Networks [22.47355575565345]
物理インフォームドニューラルネットワーク(PINN)は、物理増強された損失関数を用いて、その出力が基本的な物理法則と一致していることを保証する。
実際に多くの問題に対して正確なPINNモデルをトレーニングすることは困難であることが判明した。
論文 参考訳(メタデータ) (2021-09-20T07:42:41Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。