論文の概要: A Tutorial on Parametric Variational Inference
- arxiv url: http://arxiv.org/abs/2301.01236v1
- Date: Tue, 3 Jan 2023 17:30:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-04 14:22:14.585374
- Title: A Tutorial on Parametric Variational Inference
- Title(参考訳): パラメトリック変分推論に関するチュートリアル
- Authors: Jens Sj\"olund
- Abstract要約: 変分推論は、多くの高次元モデルや大きなデータセットに好まれる選択である。
このチュートリアルでは,近年の展開を左右するパラメトリックな観点からの変分推論を紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational inference uses optimization, rather than integration, to
approximate the marginal likelihood, and thereby the posterior, in a Bayesian
model. Thanks to advances in computational scalability made in the last decade,
variational inference is now the preferred choice for many high-dimensional
models and large datasets. This tutorial introduces variational inference from
the parametric perspective that dominates these recent developments, in
contrast to the mean-field perspective commonly found in other introductory
texts.
- Abstract(参考訳): 変分推論は積分ではなく最適化を使い、ベイズモデルにおいて限界確率を近似し、従って後端を近似する。
過去10年間の計算スケーラビリティの進歩のおかげで、多くの高次元モデルや大規模データセットでは変分推論が好まれるようになった。
このチュートリアルでは、他の序文に見られる平均場視点とは対照的に、これらの最近の発展を左右するパラメトリックな視点から変分推論を導入する。
関連論文リスト
- Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Nonparametric Automatic Differentiation Variational Inference with
Spline Approximation [7.5620760132717795]
複雑な構造を持つ分布に対するフレキシブルな後続近似を可能にする非パラメトリック近似法を開発した。
広く使われている非パラメトリック推論手法と比較して,提案手法は実装が容易であり,様々なデータ構造に適応する。
実験では, 複雑な後続分布の近似における提案手法の有効性を実証し, 不完全データを用いた生成モデルの性能向上を図った。
論文 参考訳(メタデータ) (2024-03-10T20:22:06Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
回帰シナリオの予測セットは、応答変数が$Y$で、多様体に存在し、Xで表される共変数がユークリッド空間にあるときに検討する。
我々は、多様体上のこれらの領域の経験的バージョンが、その集団に対するほぼ確実に収束していることを証明する。
論文 参考訳(メタデータ) (2023-10-12T10:56:25Z) - Prior Density Learning in Variational Bayesian Phylogenetic Parameters
Inference [1.03590082373586]
本稿では,勾配に基づく手法とニューラルネットワークに基づくパラメータ化を用いて,それらのパラメータを学習することで,先行密度の剛性を緩和する手法を提案する。
実験の結果, 分岐長と進化モデルパラメータを推定する上で, 提案手法は強力であることが示唆された。
論文 参考訳(メタデータ) (2023-02-06T01:29:15Z) - Manifold Gaussian Variational Bayes on the Precision Matrix [70.44024861252554]
複雑なモデルにおける変分推論(VI)の最適化アルゴリズムを提案する。
本研究では,変分行列上の正定値制約を満たすガウス変分推論の効率的なアルゴリズムを開発した。
MGVBPはブラックボックスの性質のため、複雑なモデルにおけるVIのための準備が整ったソリューションである。
論文 参考訳(メタデータ) (2022-10-26T10:12:31Z) - Quasi Black-Box Variational Inference with Natural Gradients for
Bayesian Learning [84.90242084523565]
複素モデルにおけるベイズ学習に適した最適化アルゴリズムを開発した。
我々のアプローチは、モデル固有導出に制限のある効率的なトレーニングのための一般的なブラックボックスフレームワーク内の自然な勾配更新に依存している。
論文 参考訳(メタデータ) (2022-05-23T18:54:27Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
本稿では,ガンマハイパープライヤを用いた階層的逆問題に対する変分反復交替方式を提案する。
提案した変分推論手法は正確な再構成を行い、意味のある不確実な定量化を提供し、実装が容易である。
論文 参考訳(メタデータ) (2021-11-26T06:33:29Z) - Transfer Learning with Gaussian Processes for Bayesian Optimization [9.933956770453438]
トランスファーラーニングのための階層型GPモデルについて統一的なビューを提供し、メソッド間の関係を分析する。
我々は,既存のアプローチと複雑性の両立する新しい閉形式GP転送モデルを開発した。
大規模実験における異なる手法の性能評価を行い、異なる移動学習手法の長所と短所を強調した。
論文 参考訳(メタデータ) (2021-11-22T14:09:45Z) - Transformation Models for Flexible Posteriors in Variational Bayes [0.0]
ニューラルネットワークでは、変分推論は、計算が難しい後部を近似するために広く使われている。
変換モデルは任意の分布に適合するほど柔軟です。
TM-VIは、1つのパラメータを持つモデルの複雑な後部を正確に近似することができる。
論文 参考訳(メタデータ) (2021-06-01T14:43:47Z) - Challenges and Opportunities in High-dimensional Variational Inference [65.53746326245059]
低次元後肢に対する近似家族と多様性に関する直観が高次元後肢に失敗する理由を示す。
高次元後方に対しては、最適化が最も容易かつ安定な排他的KL発散を用いることを推奨する。
低から中程度の次元では、重尾の変異族と質量被覆の分岐は、重要サンプリングによって近似を改善できる可能性を高めることができる。
論文 参考訳(メタデータ) (2021-03-01T15:53:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。