論文の概要: Hospital transfer risk prediction for COVID-19 patients from a
medicalized hotel based on Diffusion GraphSAGE
- arxiv url: http://arxiv.org/abs/2301.01596v1
- Date: Sat, 31 Dec 2022 14:59:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-05 16:06:07.599566
- Title: Hospital transfer risk prediction for COVID-19 patients from a
medicalized hotel based on Diffusion GraphSAGE
- Title(参考訳): 拡散グラフに基づく医療用ホテルからのcovid-19患者の病院転院リスク予測
- Authors: Jun-En Ding, Chih-Ho Hsu, Kuan-Chia Ling, Ling Chen, Fang-Ming Hung
- Abstract要約: 台湾では、軽度または軽度症状のある新型コロナウイルス患者の隔離施設として医療ホテルが開設された。
これらのホテルで利用可能な医療が限られているため、臨床劣化のリスクがある患者を特定することが最重要である。
本研究は, 医用ホテルにおける進行病院転院リスク予測のためのグラフベース深層学習手法の開発と評価を目的とした。
- 参考スコア(独自算出の注目度): 7.021489981474361
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The global COVID-19 pandemic has caused more than six million deaths
worldwide. Medicalized hotels were established in Taiwan as quarantine
facilities for COVID-19 patients with no or mild symptoms. Due to limited
medical care available at these hotels, it is of paramount importance to
identify patients at risk of clinical deterioration. This study aimed to
develop and evaluate a graph-based deep learning approach for progressive
hospital transfer risk prediction in a medicalized hotel setting. Vital sign
measurements were obtained for 632 patients and daily patient similarity graphs
were constructed. Inductive graph convolutional network models were trained on
top of the temporally integrated graphs to predict hospital transfer risk. The
proposed models achieved AUC scores above 0.83 for hospital transfer risk
prediction based on the measurements of past 1, 2, and 3 days, outperforming
baseline machine learning methods. A post-hoc analysis on the constructed
diffusion-based graph using Local Clustering Coefficient discovered a high-risk
cluster with significantly older mean age, higher body temperature, lower SpO2,
and shorter length of stay. Further time-to-hospital-transfer survival analysis
also revealed a significant decrease in survival probability in the discovered
high-risk cluster. The obtained results demonstrated promising predictability
and interpretability of the proposed graph-based approach. This technique may
help preemptively detect high-risk patients at community-based medical
facilities similar to a medicalized hotel.
- Abstract(参考訳): 世界的な新型コロナウイルス(COVID-19)パンデミックは世界中で600万人以上の死者を出した。
台湾では、無症状または軽症患者の隔離施設として医療用ホテルが開設された。
これらのホテルで利用可能な医療が限られているため、臨床劣化のリスクがある患者を特定することが最重要である。
本研究は, 医用ホテルにおける進行病院転院リスク予測のためのグラフベース深層学習手法の開発と評価を目的とした。
632名の患者に対してバイタルサイン測定を行い,毎日の類似度グラフを作成した。
インダクティブグラフ畳み込みネットワークモデルは, 病院転院リスクを予測するために, 時間的統合グラフ上で訓練された。
提案モデルでは,過去1, 2, 3日の測定結果に基づいて,病院の転院リスク予測において,AUCスコアが0.83以上に達した。
局所クラスタリング係数を用いて構築した拡散グラフのポストホック解析により, 平均年齢, 体温, SpO2の低下, 滞在期間の短い高リスククラスタが発見された。
さらに経時的・経時的生存分析の結果,高リスククラスターの生存確率は有意に低下した。
その結果,提案手法の予測可能性および解釈可能性を示した。
この技術は、医療施設のような地域医療施設で高リスク患者を事前に検出するのに役立つ。
関連論文リスト
- SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
現状の生存モデルと解釈可能かつ競合する新しい生存分析パイプラインを提案する。
我々のパイプラインは最先端のパフォーマンスを達成し、心不全のリスク要因に関する興味深い新しい洞察を提供する。
論文 参考訳(メタデータ) (2023-10-24T02:56:05Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
本稿では,電子健康記録の医用テキストを予測に用いる新しい手法を提案する。
外部知識グラフによって強化された多視点グラフを有する患者の退院サマリーを表現している。
実験により,本手法の有効性が証明され,最先端の性能が得られた。
論文 参考訳(メタデータ) (2021-12-19T01:45:57Z) - Machine learning approach to dynamic risk modeling of mortality in
COVID-19: a UK Biobank study [0.0]
新型コロナウイルス(COVID-19)のパンデミックは、高リスク患者の階層化を支援する堅牢でスケーラブルなモニタリングツールを緊急に必要としてきた。
本研究は、英国バイオバンクを用いた予測モデルを開発し、検証し、新型コロナウイルスの死亡リスクを推定することを目的とする。
論文 参考訳(メタデータ) (2021-04-19T11:51:20Z) - COVID-19 Prognosis via Self-Supervised Representation Learning and
Multi-Image Prediction [32.91440827855392]
胸部X線に基づいて2種類の患者の劣化を予測するタスクを検討する。
新型コロナウイルス(covid-19)患者のデータが少ないため、既存のソリューションは、関連しない画像で教師付き事前トレーニングを利用する。
本論文では,前訓練段階における運動量コントラスト(MoCo)法に基づく自己監督学習を用いて,下流タスクに用いる一般的な画像表現を学習する。
論文 参考訳(メタデータ) (2021-01-13T07:03:17Z) - AIforCOVID: predicting the clinical outcomes in patients with COVID-19
applying AI to chest-X-rays. An Italian multicentre study [7.456548336226919]
胸部X線(CXR)が集中治療や死亡などの重篤な結果の危険にさらされる患者の早期発見のための可能なツールとして使用できるかどうかを検討する。
CXRは、CT(Computed tomography)と比較して、より単純で、より速く、より広く、放射線線量を減らす放射線技術である。
2020年春にイタリアの6つの病院から820人の患者から収集されたデータを含むデータセットを提案する。
論文 参考訳(メタデータ) (2020-12-11T18:03:08Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Individualized Prediction of COVID-19 Adverse outcomes with MLHO [9.197411456718708]
我々は、反復的な特徴とアルゴリズムの選択を利用して健康状態を予測するエンドツーエンドの機械学習フレームワークを開発した。
入院前患者の健康状態と人口統計を表わす特徴として,約600点を用いた4つの有害な結果のモデル化を行った。
以上の結果から, 人口統計学的変数は, 新型コロナウイルス感染後の副作用の予測因子として重要であるが, 過去の臨床記録の組み入れは, 信頼性の高い予測モデルに欠かせないことが示唆された。
論文 参考訳(メタデータ) (2020-08-10T02:44:52Z) - An artificial intelligence system for predicting the deterioration of
COVID-19 patients in the emergency department [28.050958444802944]
新型コロナウイルス感染症(COVID-19)のパンデミックでは、救急署の患者を迅速かつ正確にトリアージすることが重要である。
胸部X線画像から学習したディープニューラルネットワークを用いて,データ駆動による劣化リスクの自動予測手法を提案する。
我々は3,661人の患者から得られたデータを用いて,96時間以内の劣化を予測した場合に,受信者の動作特性曲線(AUC)が0.786未満の領域を達成した。
論文 参考訳(メタデータ) (2020-08-04T19:20:31Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
我々は、集中治療室入院の必要性を予測するために、人口統計、バイタルサイン、実験室の所見から、肺不透明度の放射能と非画像の特徴を組み合わせる。
また, 地域性肺炎を含む他の肺疾患にも適用できるが, 地域性肺炎に限らない。
論文 参考訳(メタデータ) (2020-07-20T19:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。