Exploring Machine Learning Techniques to Identify Important Factors
Leading to Injury in Curve Related Crashes
- URL: http://arxiv.org/abs/2301.01771v1
- Date: Wed, 4 Jan 2023 13:07:28 GMT
- Title: Exploring Machine Learning Techniques to Identify Important Factors
Leading to Injury in Curve Related Crashes
- Authors: Mehdi Moeinaddini, Mozhgan Pourmoradnasseri, Amnir Hadachi and Mario
Cools
- Abstract summary: This study tries to eliminate shortcomings by considering important pre-crash events related factors as selected variables and the number of vehicles with or without injury as a predicted variable.
This research used CRSS data from the National Highway Traffic Safety Administration (NHTSA), which includes traffic crash-related data for different states in the USA.
Analysis results revealed that the extent of the damage, critical pre-crash event, pre-impact location, the trafficway description, roadway surface condition, the month of the crash, the first harmful event, number of motor vehicles, attempted avoidance maneuver, and roadway grade affect the number of vehicles with or
- Score: 0.4129225533930965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Different factors have effects on traffic crashes and crash-related injuries.
These factors include segment characteristics, crash-level characteristics,
occupant level characteristics, environment characteristics, and vehicle level
characteristics. There are several studies regarding these factors' effects on
crash injuries. However, limited studies have examined the effects of pre-crash
events on injuries, especially for curve-related crashes. The majority of
previous studies for curve-related crashes focused on the impact of geometric
features or street design factors. The current study tries to eliminate the
aforementioned shortcomings by considering important pre-crash events related
factors as selected variables and the number of vehicles with or without injury
as the predicted variable. This research used CRSS data from the National
Highway Traffic Safety Administration (NHTSA), which includes traffic
crash-related data for different states in the USA. The relationships are
explored using different machine learning algorithms like the random forest,
C5.0, CHAID, Bayesian Network, Neural Network, C\&R Tree, Quest, etc. The
random forest and SHAP values are used to identify the most effective
variables. The C5.0 algorithm, which has the highest accuracy rate among the
other algorithms, is used to develop the final model. Analysis results revealed
that the extent of the damage, critical pre-crash event, pre-impact location,
the trafficway description, roadway surface condition, the month of the crash,
the first harmful event, number of motor vehicles, attempted avoidance
maneuver, and roadway grade affect the number of vehicles with or without
injury in curve-related crashes.
Related papers
- Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
We propose a large-scale traffic crash language dataset, named CrashEvent, summarizing 19,340 real-world crash reports.
We further formulate the crash event feature learning as a novel text reasoning problem and further fine-tune various large language models (LLMs) to predict detailed accident outcomes.
Our experiments results show that our LLM-based approach not only predicts the severity of accidents but also classifies different types of accidents and predicts injury outcomes.
arXiv Detail & Related papers (2024-06-16T03:10:16Z) - Inferring Heterogeneous Treatment Effects of Crashes on Highway Traffic:
A Doubly Robust Causal Machine Learning Approach [15.717402981513812]
This paper proposes a novel causal machine learning framework to estimate the causal effect of different types of crashes on highway speed.
Experimental results from 4815 crashes on Highway Interstate 5 in Washington State reveal the heterogeneous treatment effects of crashes at varying distances and durations.
arXiv Detail & Related papers (2024-01-01T15:03:14Z) - Prediction of Crash Injury Severity in Florida's Interstate-95 [0.0]
Traffic crashes on Florida's Interstate-95 from 2016 to 2021 were gathered.
classification methods were used to estimate the severity of driver injuries.
The Adaboost algorithm outperformed the others in terms of recall and AUC.
arXiv Detail & Related papers (2023-12-16T18:42:39Z) - Deep learning based black spot identification on Greek road networks [52.77024349608834]
Black spot identification, atemporal phenomenon, involves analyzing geographical location and time-based occurrence of road accidents.
This study focused on traffic accidents in Greek road networks to recognize black spots, utilizing data from police and government-issued car crash reports.
arXiv Detail & Related papers (2023-06-19T07:08:30Z) - Cognitive Accident Prediction in Driving Scenes: A Multimodality
Benchmark [77.54411007883962]
We propose a Cognitive Accident Prediction (CAP) method that explicitly leverages human-inspired cognition of text description on the visual observation and the driver attention to facilitate model training.
CAP is formulated by an attentive text-to-vision shift fusion module, an attentive scene context transfer module, and the driver attention guided accident prediction module.
We construct a new large-scale benchmark consisting of 11,727 in-the-wild accident videos with over 2.19 million frames.
arXiv Detail & Related papers (2022-12-19T11:43:02Z) - Behavioral Intention Prediction in Driving Scenes: A Survey [70.53285924851767]
Behavioral Intention Prediction (BIP) simulates a human consideration process and fulfills the early prediction of specific behaviors.
This work provides a comprehensive review of BIP from the available datasets, key factors and challenges, pedestrian-centric and vehicle-centric BIP approaches, and BIP-aware applications.
arXiv Detail & Related papers (2022-11-01T11:07:37Z) - Causal Imitative Model for Autonomous Driving [85.78593682732836]
We propose Causal Imitative Model (CIM) to address inertia and collision problems.
CIM explicitly discovers the causal model and utilizes it to train the policy.
Our experiments show that our method outperforms previous work in terms of inertia and collision rates.
arXiv Detail & Related papers (2021-12-07T18:59:15Z) - Causal Analysis and Classification of Traffic Crash Injury Severity
Using Machine Learning Algorithms [0.0]
The data used in this study were obtained for traffic crashes on all interstates across the state of Texas from a period of six years between 2014 and 2019.
The output of the proposed severity classification approach includes three classes for fatal and severe injury (KA) crashes, non-severe and possible injury (BC) crashes, and property damage only (PDO) crashes.
The results of Granger causality analysis identified the speed limit, surface and weather conditions, traffic volume, presence of workzones, workers in workzones, and high occupancy vehicle (HOV) lanes, as the most important factors affecting crash severity
arXiv Detail & Related papers (2021-11-30T20:32:31Z) - Crash Report Data Analysis for Creating Scenario-Wise, Spatio-Temporal
Attention Guidance to Support Computer Vision-based Perception of Fatal Crash
Risks [8.34084323253809]
This paper develops a data analytics model, named scenario-wise, Spatio-temporal attention guidance, from fatal crash report data.
It estimates the relevance of detected objects to fatal crashes from their environment and context information.
The paper shows how the developed attention guidance supports the design and implementation of a preliminary CV model.
arXiv Detail & Related papers (2021-09-06T19:43:37Z) - Human error in motorcycle crashes: a methodology based on in-depth data
to identify the skills needed and support training interventions for safe
riding [0.0]
This paper defines a methodology to identify the skills needed by riders in the highest risk crash configurations to reduce casualty rates.
We present a case study using in-depth data of 803 powered-two-wheeler crashes.
arXiv Detail & Related papers (2021-02-19T21:30:37Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
We address the fundamental problem of data scarcity in road traffic accident prediction by training our model on emergency braking events instead of accidents.
We present a prototype implementing a traffic incident prediction model for Germany based on emergency braking data from Mercedes-Benz vehicles.
arXiv Detail & Related papers (2021-02-12T18:17:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.