Universality in odd-even harmonic generation and application in
terahertz waveform sampling
- URL: http://arxiv.org/abs/2301.02910v1
- Date: Sat, 7 Jan 2023 18:06:58 GMT
- Title: Universality in odd-even harmonic generation and application in
terahertz waveform sampling
- Authors: Doan-An Trieu, Ngoc-Loan Phan, Quan-Hao Truong, Hien T. Nguyen, Cam-Tu
Le, DinhDuy Vu and Van-Hoang Le
- Abstract summary: Odd-even harmonics emitted from a laser-target system imprint rich, subtle information characterizing the system's dynamical asymmetry.
In this Letter, we discover a simple universal relation between the odd-even harmonics and the asymmetry of the THz-assisted laser-atomic system.
We propose a general pump-probe scheme for THz waveform sampling from the even-to-odd ratio, measurable within a conventional compact setup.
- Score: 0.3694429692322631
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Odd-even harmonics emitted from a laser-target system imprint rich, subtle
information characterizing the system's dynamical asymmetry, which is desirable
to decipher. In this Letter, we discover a simple universal relation between
the odd-even harmonics and the asymmetry of the THz-assisted laser-atomic
system -- atoms in a fundamental mid-IR laser pulse combined with a THz laser.
First, we demonstrate numerically and then analytically formulize the harmonic
even-to-odd ratio as a function of the THz electric field, the source of the
system's asymmetry. Notably, we suggest a scaling that makes the obtained rule
universal, independent of the parameters of both the fundamental pulse and
atomic target. This universality facilitates us to propose a general pump-probe
scheme for THz waveform sampling from the even-to-odd ratio, measurable within
a conventional compact setup.
Related papers
- Hierarchical analytical approach to universal spectral correlations in Brownian Quantum Chaos [44.99833362998488]
We develop an analytical approach to the spectral form factor and out-of-time ordered correlators in zero-dimensional Brownian models of quantum chaos.
arXiv Detail & Related papers (2024-10-21T10:56:49Z) - Laser-target symmetry-breaking in high harmonic generation: from frequency shift to odd-even intensity modulation [2.867517731896504]
We provide a comprehensive picture of the frequency shift and odd-even intensity modulation in high-order harmonic generation.
By tuning asymmetric laser-target systems, we discover a transition from the harmonic frequency shift to the odd-even intensity modulation.
arXiv Detail & Related papers (2024-06-13T03:40:37Z) - Engineering One Axis Twisting via a Dissipative Berry Phase Using Strong
Symmetries [0.0]
We show how a driven-dissipative cavity coupled to a collective ensemble of atoms can generate metrologically useful spin-squeezed states.
This work shows that it is possible to generate entanglement in an atom-cavity resonant regime with macroscopic optical excitations of the system.
arXiv Detail & Related papers (2024-01-11T19:03:46Z) - Parametric model for high-order harmonic generation with quantized
fields [0.0]
A quantum optical model for the high-order harmonic generation is presented, in which both the exciting field and the high harmonic modes are quantized.
The model is independent from the excited material system to a large extent, and allows us to focus on the properties of the electromagnetic fields.
arXiv Detail & Related papers (2023-11-03T05:51:42Z) - A Hybrid Quantum-Classical Method for Electron-Phonon Systems [40.80274768055247]
We develop a hybrid quantum-classical algorithm suitable for this type of correlated systems.
This hybrid method tackles with arbitrarily strong electron-phonon coupling without increasing the number of required qubits and quantum gates.
We benchmark the new method by applying it to the paradigmatic Hubbard-Holstein model at half filling, and show that it correctly captures the competition between charge density wave and antiferromagnetic phases.
arXiv Detail & Related papers (2023-02-20T08:08:51Z) - Nonclassical light generation and control from laser-driven
semiconductor intraband excitations [0.0]
We investigate the generation of higher-order harmonics from a quantum optics perspective.
We find intricate but sufficiently mild modifications of the fundamental mode and coherent displacements.
Similar to high-harmonic generation in atoms, all radiation field modes are entangled, allowing for potential novel protocols for quantum information processing.
arXiv Detail & Related papers (2022-11-11T12:59:15Z) - Interaction of quantum systems with single pulses of quantized radiation [68.8204255655161]
We describe the interaction of a propagating pulse of quantum radiation with a localized quantum system.
By transformation to an appropriate picture, we identify the usual Jaynes-Cummings Hamiltonian between the scatterer and a superposition of the initial and final mode.
The transformed master equation offers important insights into the system dynamics and it permits numerically efficient solutions.
arXiv Detail & Related papers (2022-03-14T20:23:23Z) - Pseudomode description of general open quantum system dynamics:
non-perturbative master equation for the spin-boson model [0.0]
We outline a non-perturbative approach for simulating the behavior of open quantum systems interacting with a bosonic environment.
Our framework can be used as a powerful and versatile tool for analyzing non-Markovian open system dynamics.
arXiv Detail & Related papers (2021-08-12T13:49:22Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Deterministic single-atom source of quasi-superradiant $N$-photon pulses [62.997667081978825]
Scheme operates with laser and cavity fields detuned from the atomic transition by much more than the excited-state hyperfine splitting.
This enables reduction of the dynamics to that of a simple, cavity-damped Tavis-Cummings model with the collective spin determined by the total angular momentum of the ground hyperfine level.
arXiv Detail & Related papers (2020-12-01T03:55:27Z) - QuTiP-BoFiN: A bosonic and fermionic numerical
hierarchical-equations-of-motion library with applications in
light-harvesting, quantum control, and single-molecule electronics [51.15339237964982]
"hierarchical equations of motion" (HEOM) is a powerful exact numerical approach to solve the dynamics.
It has been extended and applied to problems in solid-state physics, optics, single-molecule electronics, and biological physics.
We present a numerical library in Python, integrated with the powerful QuTiP platform, which implements the HEOM for both bosonic and fermionic environments.
arXiv Detail & Related papers (2020-10-21T07:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.