Weyl conjecture and thermal radiation of finite systems
- URL: http://arxiv.org/abs/2301.03623v1
- Date: Mon, 9 Jan 2023 19:00:06 GMT
- Title: Weyl conjecture and thermal radiation of finite systems
- Authors: M. C. Baldiotti, M. A. Jaraba, L. F. Santos, C. Molina
- Abstract summary: corrections for the Weyl law and Weyl conjecture in d dimensions are obtained.
Special attention is given to the two-dimensional scenario, since it can be used in the characterization of experimental setups.
Extensions and corrections for known results and usual formulas, such as the Debye frequency and Dulong-Petit law, are calculated.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this work, corrections for the Weyl law and Weyl conjecture in d
dimensions are obtained and effects related to the polarization and area term
are analyzed. The derived formalism is applied on the quasithermodynamics of
the electromagnetic field in a finite $d$-dimensional box within a
semi-classical treatment. In this context, corrections to the Stefan-Boltzmann
law are obtained. Special attention is given to the two-dimensional scenario,
since it can be used in the characterization of experimental setups. Another
application concerns acoustic perturbations in a quasithermodynamic
generalization of Debye model for a finite solid in d dimensions. Extensions
and corrections for known results and usual formulas, such as the Debye
frequency and Dulong-Petit law, are calculated.
Related papers
- Quantum electrodynamics of lossy magnetodielectric samples in vacuum: modified Langevin noise formalism [55.2480439325792]
We analytically derive the modified Langevin noise formalism from the established canonical quantization of the electromagnetic field in macroscopic media.
We prove that each of the two field parts can be expressed in term of particular bosonic operators, which in turn diagonalize the electromagnetic Hamiltonian.
arXiv Detail & Related papers (2024-04-07T14:37:04Z) - The Fermionic Entanglement Entropy and Area Law for the Relativistic Dirac Vacuum State [44.99833362998488]
We consider the fermionic entanglement entropy for the free Dirac field in a bounded spatial region of Minkowski spacetime.
An area law is proven in the limiting cases where the volume tends to infinity and/or the regularization length tends to zero.
arXiv Detail & Related papers (2023-10-05T12:08:03Z) - A mathematical analysis of the adiabatic Dyson equation from
time-dependent density functional theory [0.0]
We analyze the Dyson equation for the density-density response function (DDRF) that plays a central role in linear response time-dependent density functional theory.
We derive a representation formula for the solution of the Dyson equation in terms of an operator version of the Casida matrix.
We show that for adiabatic approximations satisfying a suitable compactness condition, the maximal domains of meromorphic continuation of the initial density-density response function and the solution of the Dyson equation are the same.
arXiv Detail & Related papers (2023-05-15T15:46:33Z) - Numerical Framework for Modeling Quantum Electromagnetic Systems
Involving Finite-Sized Lossy Dielectric Objects in Free Space [2.4697418743064667]
We propose and develop a novel numerical framework for the modified Langevin noise formalism.
Specifically, we utilize the finite-element method to numerically solve plane-wave-scattering and point-source-radiation problems.
It is numerically proved, for the first time, that one can retrieve the conventional expression of the spontaneous emission rate.
arXiv Detail & Related papers (2023-02-13T07:06:08Z) - Quantum theory, thermal gradients and the curved Euclidean space [0.0]
We develop an equivalence between the spatial variation of temperature in a thermal bath and the curvature of the Euclidean space.
The equivalence is substantiated by analyzing the Polyakov loop, the partition function and the periodicity of the correlation function.
The Dirac equation for an external Dirac spinor, traversing in a thermal bath with spatial thermal gradients, is solved in the curved Euclidean space.
arXiv Detail & Related papers (2022-06-27T14:10:09Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Role of the electromagnetic vacuum in the transition from classical to
quantum mechanics [0.0]
We revisit the nonrelativistic problem of a bound, charged particle subject to the random zero-point radiation field (ZPF)
We reveal the mechanism that takes it from the initially classical description to the final quantum-mechanical one.
arXiv Detail & Related papers (2022-03-21T23:57:52Z) - Determination of the critical exponents in dissipative phase
transitions: Coherent anomaly approach [51.819912248960804]
We propose a generalization of the coherent anomaly method to extract the critical exponents of a phase transition occurring in the steady-state of an open quantum many-body system.
arXiv Detail & Related papers (2021-03-12T13:16:18Z) - Finite-temperature, anharmonicity, and Duschinsky effects on the
two-dimensional electronic spectra from ab initio thermo-field Gaussian
wavepacket dynamics [0.0]
We use the concept of thermo-field dynamics to derive an exact finite-temperature expression that lends itself to an intuitive wavepacket-based interpretation.
An efficient method for computing finite-temperature two-dimensional spectra is obtained by combining the exact thermo-field dynamics approach with the thawed Gaussian approximation for the wavepacket dynamics.
arXiv Detail & Related papers (2021-01-28T19:56:02Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.