A mathematical analysis of the adiabatic Dyson equation from
time-dependent density functional theory
- URL: http://arxiv.org/abs/2305.08731v2
- Date: Fri, 26 May 2023 14:27:33 GMT
- Title: A mathematical analysis of the adiabatic Dyson equation from
time-dependent density functional theory
- Authors: Thiago Carvalho Corso
- Abstract summary: We analyze the Dyson equation for the density-density response function (DDRF) that plays a central role in linear response time-dependent density functional theory.
We derive a representation formula for the solution of the Dyson equation in terms of an operator version of the Casida matrix.
We show that for adiabatic approximations satisfying a suitable compactness condition, the maximal domains of meromorphic continuation of the initial density-density response function and the solution of the Dyson equation are the same.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this article, we analyze the Dyson equation for the density-density
response function (DDRF) that plays a central role in linear response
time-dependent density functional theory (LR-TDDFT). First, we present a
functional analytic setting that allows for a unified treatment of the Dyson
equation with general adiabatic approximations for discrete (finite and
infinite) and continuum systems. In this setting, we derive a representation
formula for the solution of the Dyson equation in terms of an operator version
of the Casida matrix. While the Casida matrix is well-known in the physics
literature, its general formulation as an (unbounded) operator in the N-body
wavefunction space appears to be new. Moreover, we derive several consequences
of the solution formula obtained here; in particular, we discuss the stability
of the solution and characterize the maximal meromorphic extension of its
Fourier transform. We then show that for adiabatic approximations satisfying a
suitable compactness condition, the maximal domains of meromorphic continuation
of the initial density-density response function and the solution of the Dyson
equation are the same. The results derived here apply to widely used adiabatic
approximations such as (but not limited to) the random phase approximation
(RPA) and the adiabatic local density approximation (ALDA). In particular,
these results show that neither of these approximations can shift the
ionization threshold of the Kohn-Sham system.
Related papers
- Closed-form solutions for the Salpeter equation [41.94295877935867]
We study the propagator of the $1+1$ dimensional Salpeter Hamiltonian, describing a relativistic quantum particle with no spin.
The analytical extension of the Hamiltonian in the complex plane allows us to formulate the equivalent problem, namely the B"aumer equation.
This B"aumera corresponds to the Green function of a relativistic diffusion process that interpolates between Cauchy for small times and Gaussian diffusion for large times.
arXiv Detail & Related papers (2024-06-26T15:52:39Z) - Exact dynamics of quantum dissipative $XX$ models: Wannier-Stark localization in the fragmented operator space [49.1574468325115]
We find an exceptional point at a critical dissipation strength that separates oscillating and non-oscillating decay.
We also describe a different type of dissipation that leads to a single decay mode in the whole operator subspace.
arXiv Detail & Related papers (2024-05-27T16:11:39Z) - Relativistic exponential-type spinor orbitals and their use in many-electron Dirac equation solution [0.0]
Dirac-Coulomb type differential equation and its solution relativistic exponential-type spinor orbitals are introduced.
A new formulation for relativistic auxiliary functions that improve the efficiency in Coulomb energy calculations is presented.
arXiv Detail & Related papers (2024-03-23T20:48:54Z) - The Half Transform Ansatz: Quarkonium Dynamics in Quantum Phase Space [0.0]
We present a method to cast the Schrodinger Equation into a hyper-geometric form which can be solved for the phase space wave function and its energy eigenvalues.
We also analyze the behavior of these wave functions, which suggest a correlation between radial momentum and the upper limit of existence in charm-anticharm mesons.
arXiv Detail & Related papers (2023-03-28T23:38:57Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
We propose a deep learning approach to solve Kohn-Sham Density Functional Theory (KS-DFT)
We prove that such an approach has the same expressivity as the SCF method, yet reduces the computational complexity.
In addition, we show that our approach enables us to explore more complex neural-based wave functions.
arXiv Detail & Related papers (2023-03-01T10:38:10Z) - Real-Space, Real-Time Approach to Quantum-Electrodynamical
Time-Dependent Density Functional Theory [55.41644538483948]
The equations are solved by time propagating the wave function on a tensor product of a Fock-space and real-space grid.
Examples include the coupling strength and light frequency dependence of the energies, wave functions, optical absorption spectra, and Rabi splitting magnitudes in cavities.
arXiv Detail & Related papers (2022-09-01T18:49:51Z) - Compressive Fourier collocation methods for high-dimensional diffusion
equations with periodic boundary conditions [7.80387197350208]
High-dimensional Partial Differential Equations (PDEs) are a popular mathematical modelling tool, with applications ranging from finance to computational chemistry.
Standard numerical techniques for solving these PDEs are typically affected by the curse of dimensionality.
Inspired by recent progress in sparse function approximation in high dimensions, we propose a new method called compressive Fourier collocation.
arXiv Detail & Related papers (2022-06-02T19:11:27Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Determination of the critical exponents in dissipative phase
transitions: Coherent anomaly approach [51.819912248960804]
We propose a generalization of the coherent anomaly method to extract the critical exponents of a phase transition occurring in the steady-state of an open quantum many-body system.
arXiv Detail & Related papers (2021-03-12T13:16:18Z) - The variational method applied to the harmonic oscillator in presence of
a delta function potential [0.0]
We show that the eigenfunctions obtained exactly are difficult to visualise and hence to gain more insight.
We apply the variational method to verify how close one can approach the exact ground state eigenvalues.
We obtain the estimates of the ground state energies which are closer to the exact values in comparison to earlier approximate results for both the repulsive and attractive delta potentials.
arXiv Detail & Related papers (2020-12-01T15:05:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.