Nanoscale addressing and manipulation of neutral atoms using
electromagnetically induced transparency
- URL: http://arxiv.org/abs/2301.03654v1
- Date: Mon, 9 Jan 2023 19:51:25 GMT
- Title: Nanoscale addressing and manipulation of neutral atoms using
electromagnetically induced transparency
- Authors: U. Saglam, T. G. Walker, M. Saffman, and D. D. Yavuz
- Abstract summary: We propose to integrate dark-state based localization techniques into a neutral atom quantum computing architecture.
The first scheme implements state-selective projective measurement by scattering photons from a specific qubit.
The second scheme performs a single-qubit phase gate on the target atom with an incoherent spontaneous emission probability as low as 0.01.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose to integrate dark-state based localization techniques into a
neutral atom quantum computing architecture and numerically investigate two
specific schemes. The first scheme implements state-selective projective
measurement by scattering photons from a specific qubit with very little cross
talk on the other atoms in the ensemble. The second scheme performs a
single-qubit phase gate on the target atom with an incoherent spontaneous
emission probability as low as 0.01. Our numerical simulations in rubidium (Rb)
atoms show that for both of these schemes a spatial resolution at the level of
tens of nanometers using near-infrared light can be achieved with
experimentally realistic parameters.
Related papers
- Widely tunable solid-state source of single-photons matching an atomic
transition [0.18593647992779513]
Hybrid quantum technologies aim to harness the best characteristics of multiple quantum systems.
quantum dots embedded in semiconductor nanowires can produce highly pure, deterministic, and indistinguishable single-photons with high repetition.
atomic ensembles offer robust photon storage capabilities and strong optical nonlinearities that can be controlled with single-photons.
arXiv Detail & Related papers (2023-09-13T05:47:26Z) - Bursts of polarised single photons from atom-cavity sources [3.6594988197536344]
We propose a scheme for producing bursts of polarised single photons by coupling a generalised atomic emitter to an optical cavity.
In connection with two re-preparation methods, simulations predict 10-photon bursts coincidence count rates on the order of 1 kHz.
This paves the way for novel n-photon experiments with atom-cavity sources.
arXiv Detail & Related papers (2023-05-08T17:39:21Z) - Commensurate and incommensurate 1D interacting quantum systems [0.0]
Single-atom imaging resolution of many-body quantum systems in optical lattices is routinely achieved with quantum-gas microscopes.
Here, we employ dynamically varying microscopic light potentials in a quantum-gas microscope to study commensurate and incommensurate 1D systems of interacting bosonic Rb atoms.
arXiv Detail & Related papers (2023-05-05T18:49:43Z) - Ultraprecise off-axis atom localization with hybrid fields [7.5225293309885455]
We propose a scheme for realizing two-dimensional off-axis atom localization in a three-level Lambda-type system.
Our results provide a more flexible way to localize atoms in a two-dimensional system, possibly paving one-step closer to the nanometer-scale atom lithography and ultraprecise microscopy.
arXiv Detail & Related papers (2022-06-22T11:09:03Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - The quantum jump method: photon statistics and macroscopic quantum jumps
of two interacting atoms [0.0]
We first use the quantum method to replicate the well-known results of a single atom relaxing.
By use of individual "quantum trajectories", the method allows for simulation of systems inaccessible to ensemble treatments.
arXiv Detail & Related papers (2022-01-21T17:51:08Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Single photon randomness originating from the symmetry of dipole
emission and the unpredictability of spontaneous emission [55.41644538483948]
Quantum random number generation is a key ingredient for quantum cryptography and fundamental quantum optics.
We experimentally demonstrate quantum random number generation based on the spontaneous emission process.
The scheme can be extended to random number generation by coherent single photons with potential applications in solid-state based quantum communication at room temperature.
arXiv Detail & Related papers (2021-02-18T14:07:20Z) - Quantum interface between light and a one-dimensional atomic system [58.720142291102135]
We investigate optimal conditions for the quantum interface between a signal photon pulse and one-dimensional chain consisting of a varied number of atoms.
The efficiency of interaction is mainly limited by achieved overlap and coupling of the waveguide evanescent field with the trapped atoms.
arXiv Detail & Related papers (2020-04-11T11:43:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.