Widely tunable solid-state source of single-photons matching an atomic
transition
- URL: http://arxiv.org/abs/2309.06734v1
- Date: Wed, 13 Sep 2023 05:47:26 GMT
- Title: Widely tunable solid-state source of single-photons matching an atomic
transition
- Authors: Rubayet Al Maruf, Sreesh Venuturumilli, Divya Bharadwaj, Paul
Anderson, Jiawei Qiu, Yujia Yuan, Mohd Zeeshan, Behrooz Semnani, Philip J.
Poole, Dan Dalacu, Kevin Resch, Michael E. Reimer and Michal Bajcsy
- Abstract summary: Hybrid quantum technologies aim to harness the best characteristics of multiple quantum systems.
quantum dots embedded in semiconductor nanowires can produce highly pure, deterministic, and indistinguishable single-photons with high repetition.
atomic ensembles offer robust photon storage capabilities and strong optical nonlinearities that can be controlled with single-photons.
- Score: 0.18593647992779513
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hybrid quantum technologies aim to harness the best characteristics of
multiple quantum systems, in a similar fashion that classical computers combine
electronic, photonic, magnetic, and mechanical components. For example, quantum
dots embedded in semiconductor nanowires can produce highly pure,
deterministic, and indistinguishable single-photons with high repetition, while
atomic ensembles offer robust photon storage capabilities and strong optical
nonlinearities that can be controlled with single-photons. However, to
successfully integrate quantum dots with atomic ensembles, one needs to
carefully match the optical frequencies of these two platforms. Here, we
propose and experimentally demonstrate simple, precise, reversible,
broad-range, and local method for controlling the emission frequency of
individual quantum dots embedded in tapered semiconductor nanowires and use it
to interface with an atomic ensemble via single-photons matched to hyperfine
transitions and slow-light regions of the cesium D1-line. Our approach allows
linking together atomic and solid-state quantum systems and can potentially
also be applied to other types of nanowire-embedded solid-state emitters, as
well as to creating devices based on multiple solid-state emitters tuned to
produce indistinguishable photons.
Related papers
- Tunable quantum emitters on large-scale foundry silicon photonics [0.6165122427320179]
Integration of atomic quantum systems with single-emitter tunability remains an open challenge.
Here, we overcome this barrier through the hybrid integration of multiple InAs/InP microchiplets containing high-brightness infrared semiconductor quantum dot single photon emitters.
We achieve single photon emission via resonance fluorescence and scalable emission wavelength tunability through an electrically controlled non-volatile memory.
arXiv Detail & Related papers (2023-06-10T15:04:30Z) - Tunable phononic coupling in excitonic quantum emitters [6.510363316842893]
We report the deterministic creation of quantum emitters featuring highly tunable coupling between excitons and phonons.
The quantum emitters are formed in strain-induced quantum dots created in homobilayer semiconductor WSe2.
arXiv Detail & Related papers (2023-02-27T02:47:56Z) - Jaynes-Cummings interaction between low energy free-electrons and cavity
photons [0.571097144710995]
We propose a new approach to realize the Jaynes-Cummings Hamiltonian using low energy free-electrons coupled to dielectric microcavities.
Our approach utilizes quantum recoil, which causes a large detuning that inhibits the emission of multiple consecutive photons.
We show that this approach can be used for generation of single photons with unity efficiency and high fidelity.
arXiv Detail & Related papers (2023-02-03T07:06:51Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Single photon emission from individual nanophotonic-integrated colloidal
quantum dots [45.82374977939355]
Solution processible colloidal quantum dots hold great promise for realizing single-photon sources embedded into scalable quantum technology platforms.
We report on integrating individual colloidal core-shell quantum dots into a nanophotonic network that allows for excitation and efficient collection of single-photons via separate waveguide channels.
arXiv Detail & Related papers (2021-04-23T22:14:17Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Efficient DNA-driven nanocavities for approaching quasi-deterministic
strong coupling to a few fluorophores [4.138309038177141]
A strong coupling unit based on an emitter-plasmonic nanocavity system has the potential to bring devices to the microchip scale at ambient conditions.
In this work, fluorophore-modified DNA strands are utilized to drive the formation of particle-on-film plasmonic nanocavities.
The high correlation between electronic transition of the fluorophore and the cavity resonance is observed, implying more vibrational modes may be involved.
arXiv Detail & Related papers (2021-03-11T15:51:09Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Quantum interface between light and a one-dimensional atomic system [58.720142291102135]
We investigate optimal conditions for the quantum interface between a signal photon pulse and one-dimensional chain consisting of a varied number of atoms.
The efficiency of interaction is mainly limited by achieved overlap and coupling of the waveguide evanescent field with the trapped atoms.
arXiv Detail & Related papers (2020-04-11T11:43:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.