Artificial Intelligence Model for Tumoral Clinical Decision Support Systems
- URL: http://arxiv.org/abs/2301.03701v3
- Date: Fri, 24 May 2024 07:25:28 GMT
- Title: Artificial Intelligence Model for Tumoral Clinical Decision Support Systems
- Authors: Guillermo Iglesias, Edgar Talavera, Jesús Troya Garcìa, Alberto Díaz-Álvarez, Miguel Gracía-Remesal,
- Abstract summary: Comparative diagnostic in brain tumor evaluation makes possible to use available information of a medical center to compare similar cases when a new patient is evaluated.
By leveraging Artificial Intelligence models, the proposed system is able of retrieving the most similar cases of brain tumors for a given query.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Comparative diagnostic in brain tumor evaluation makes possible to use the available information of a medical center to compare similar cases when a new patient is evaluated. By leveraging Artificial Intelligence models, the proposed system is able of retrieving the most similar cases of brain tumors for a given query. The primary objective is to enhance the diagnostic process by generating more accurate representations of medical images, with a particular focus on patient-specific normal features and pathologies. The proposed model uses Artificial Intelligence to detect patient features to recommend the most similar cases from a database. The system not only suggests similar cases but also balances the representation of healthy and abnormal features in its design. This not only encourages the generalization of its use but also aids clinicians in their decision-making processes. We conducted a comparative analysis of our approach in relation to similar studies. The proposed architecture obtains a Dice coefficient of 0.474 in both tumoral and healthy regions of the patients, which outperforms previous literature. Our proposed model excels at extracting and combining anatomical and pathological features from brain \glspl{mr}, achieving state-of-the-art results while relying on less expensive label information. This substantially reduces the overall cost of the training process. This paper provides substantial grounds for further exploration of the broader applicability and optimization of the proposed architecture to enhance clinical decision-making. The novel approach presented in this work marks a significant advancement in the field of medical diagnosis, particularly in the context of Artificial Intelligence-assisted image retrieval, and promises to reduce costs and improve the quality of patient care using Artificial Intelligence as a support tool instead of a black box system.
Related papers
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
This study focuses on the clinical evaluation of medical Synthetic Data Generation using Artificial Intelligence (AI) models.
The paper contributes by a) presenting a protocol for the systematic evaluation of synthetic images by medical experts and b) applying it to assess TIDE-II, a novel variational autoencoder-based model for high-resolution WCE image synthesis.
The results show that TIDE-II generates clinically relevant WCE images, helping to address data scarcity and enhance diagnostic tools.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - Analyzing the Effect of $k$-Space Features in MRI Classification Models [0.0]
We have developed an explainable AI methodology tailored for medical imaging.
We employ a Convolutional Neural Network (CNN) that analyzes MRI scans across both image and frequency domains.
This approach not only enhances early training efficiency but also deepens our understanding of how additional features impact the model predictions.
arXiv Detail & Related papers (2024-09-20T15:43:26Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Evaluating Explanatory Capabilities of Machine Learning Models in Medical Diagnostics: A Human-in-the-Loop Approach [0.0]
We use Human-in-the-Loop related techniques and medical guidelines as a source of domain knowledge to establish the importance of the different features that are relevant to establish a pancreatic cancer treatment.
We propose the use of similarity measures such as the weighted Jaccard Similarity coefficient to facilitate interpretation of explanatory results.
arXiv Detail & Related papers (2024-03-28T20:11:34Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
Image-to-text radiology report generation aims to automatically produce radiology reports that describe the findings in medical images.
Most existing methods focus solely on the image data, disregarding the other patient information accessible to radiologists.
We present a novel multi-modal deep neural network framework for generating chest X-rays reports by integrating structured patient data, such as vital signs and symptoms, alongside unstructured clinical notes.
arXiv Detail & Related papers (2023-11-18T14:37:53Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - AI Framework for Early Diagnosis of Coronary Artery Disease: An
Integration of Borderline SMOTE, Autoencoders and Convolutional Neural
Networks Approach [0.44998333629984877]
We develop a methodology for balancing and augmenting data for more accurate prediction when the data is imbalanced and the sample size is small.
The experimental results revealed that the average accuracy of our proposed method for CAD prediction was 95.36, and was higher than random forest (RF), decision tree (DT), support vector machine (SVM), logistic regression (LR), and artificial neural network (ANN)
arXiv Detail & Related papers (2023-08-29T14:33:38Z) - Unbiased Pain Assessment through Wearables and EHR Data: Multi-attribute
Fairness Loss-based CNN Approach [3.799109312082668]
We propose a Multi-attribute Fairness Loss (MAFL) based CNN model to account for any sensitive attributes included in the data.
We compare the proposed model with well-known existing mitigation procedures, and studies reveal that the implemented model performs favorably in contrast to state-of-the-art methods.
arXiv Detail & Related papers (2023-07-03T09:21:36Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Deep and Statistical Learning in Biomedical Imaging: State of the Art in
3D MRI Brain Tumor Segmentation [1.7403133838762446]
We critically review major statistical and deep learning models and their applications in brain imaging research.
The results do highlight that model-driven classical statistics and data-driven deep learning is a potent combination for developing automated systems in clinical oncology.
arXiv Detail & Related papers (2021-03-09T16:15:47Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.