論文の概要: Averaging gate approximation error and performance of Unitary Coupled Cluster ansatz in Pre-FTQC Era
- arxiv url: http://arxiv.org/abs/2301.04150v2
- Date: Wed, 24 Jul 2024 15:37:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 20:09:44.802075
- Title: Averaging gate approximation error and performance of Unitary Coupled Cluster ansatz in Pre-FTQC Era
- Title(参考訳): 単位結合クラスタアンサッツのFTQC前における平均ゲート近似誤差と性能
- Authors: Kohdai Kuroiwa, Yuya O. Nakagawa,
- Abstract要約: フォールトトレラント量子計算(FTQC)は、雑音耐性のある方法で量子アルゴリズムを実装するために不可欠である。
FTQCでは、量子回路はフォールトトレラントの実装が可能な普遍ゲートに分解される。
本稿では,所定の量子回路に対するClifford+$T$分解誤差を非偏極雑音としてモデル化できることを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fault-tolerant quantum computation (FTQC) is essential to implement quantum algorithms in a noise-resilient way, and thus to enjoy advantages of quantum computers even with presence of noise. In FTQC, a quantum circuit is decomposed into universal gates that can be fault-tolerantly implemented, for example, Clifford+$T$ gates. Here, $T$ gate is usually regarded as an essential resource for quantum computation because its action cannot be simulated efficiently on classical computers and it is experimentally difficult to implement fault-tolerantly. Practically, it is highly likely that only a limited number of $T$ gates are available in the near future. Pre-FTQC era, due to the constraint on available resources, it is vital to precisely estimate the decomposition error of a whole circuit. In this paper, we propose that the Clifford+$T$ decomposition error for a given quantum circuit containing a large number of quantum gates can be modeled as the depolarizing noise by averaging the decomposition error for each quantum gate in the circuit, and our model provides more accurate error estimation than the naive estimation. We exemplify this by taking unitary coupled-cluster (UCC) ansatz used in the applications of quantum computers to quantum chemistry as an example. We theoretically evaluate the approximation error of UCC ansatz when decomposed into Clifford+$T$ gates, and the numerical simulation for a wide variety of molecules verified that our model well explains the total decomposition error of the ansatz. Our results enable the precise and efficient usage of quantum resources in the early-stage applications of quantum computers and fuel further research towards what quantum computation can achieve in the upcoming future.
- Abstract(参考訳): フォールトトレラント量子計算(FTQC)は、ノイズ耐性のある方法で量子アルゴリズムを実装するために不可欠であり、ノイズがあっても量子コンピュータの利点を享受する。
FTQCでは、量子回路は普遍ゲートに分解され、例えばClifford+$T$ゲートのようにフォールトトレラントに実装できる。
ここでは、$T$ gateは古典的コンピュータでは効率的に動作をシミュレートすることができず、フォールトトレラントな実装が実験的に困難であるため、一般に量子計算の必須資源とみなされる。
実際には、近い将来、限られた数のT$ゲートしか利用できない可能性が高い。
FTQC以前は、利用可能なリソースの制約のため、回路全体の分解誤差を正確に推定することが不可欠であった。
本稿では,多数の量子ゲートを含む所定の量子回路に対するClifford+$T$分解誤差を,回路内の各量子ゲートの分解誤差を平均化することにより,デポーラ化ノイズとしてモデル化できることを提案する。
我々は、量子コンピュータの量子化学への応用に使用されるユニタリ結合クラスタ(UCC)アンサッツを例に挙げてこれを実証する。
Clifford+$T$ゲートに分解した場合のUCCアンザッツの近似誤差を理論的に評価し,本モデルがアンザッツの総分解誤差をうまく説明していることを多種多様な分子の数値シミュレーションにより検証した。
この結果から,量子コンピュータの早期応用における量子資源の正確かつ効率的な利用が可能となり,今後の量子計算の実現に向けたさらなる研究が進められる。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Resource-compact time-optimal quantum computation [5.034472655243636]
フォールトトレラントな量子計算は時間と資源の両方の観点から大きなオーバーヘッドをもたらす。
本稿では,時間-最適量子計算における資源利用を最小化する量子回路を提案する。
論文 参考訳(メタデータ) (2024-04-30T20:47:35Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Comparing planar quantum computing platforms at the quantum speed limit [0.0]
我々は、中性原子および超伝導量子ビットにおける現実的な2量子および多量子ゲート実装のための量子速度制限(QSL)の理論最小ゲート時間の比較を示す。
我々はこれらの量子アルゴリズムを、標準ゲートモデルとパリティマッピングの両方において、回路実行時間とゲート数の観点から解析する。
論文 参考訳(メタデータ) (2023-04-04T12:47:00Z) - A fault-tolerant variational quantum algorithm with limited T-depth [2.7648976108201815]
本稿では,フォールトトレラントゲートセットを用いた変分量子固有解法(VQE)アルゴリズムを提案する。
VQEは将来の誤り訂正量子コンピュータの実装に適している。
論文 参考訳(メタデータ) (2023-03-08T10:31:12Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
モルマー・ソレンセンエンタングゲートの誤校正パラメータの系統的摂動展開について検討した。
我々はゲート進化演算子を計算し、関連する鍵特性を得る。
我々は、捕捉されたイオン量子プロセッサにおける測定値に対して、モデルからの予測をベンチマークすることで検証する。
論文 参考訳(メタデータ) (2021-12-10T10:56:16Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
与えられたハミルトニアンの基底状態と低い励起を見つけることは、物理学の多くの分野において最も重要な問題の一つである。
Noisy Intermediate-Scale Quantum (NISQ) デバイス上の量子コンピューティングは、そのような計算を効率的に実行する可能性を提供する。
現在の量子デバイスは、今でも固有の量子ノイズに悩まされている。
論文 参考訳(メタデータ) (2021-11-30T16:08:01Z) - $i$-QER: An Intelligent Approach towards Quantum Error Reduction [5.055934439032756]
量子回路のエラーを評価するスケーラブルな機械学習ベースのアプローチである$i$-QERを導入する。
i$-QERは、教師付き学習モデルを使用して、与えられた量子回路で可能なエラーを予測する。
これにより、大きな量子回路を2つの小さなサブ回路に分割する。
論文 参考訳(メタデータ) (2021-10-12T20:45:03Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
本稿では,最適化問題における短期量子優位性の提案に着想を得た高忠実度ゲートセットを提案する。
3つのトランペット四重項のコヒーレントな多レベル制御を編成することにより、自然な3量子ビット計算ベースで作用する決定論的連続角量子位相ゲートの族を合成する。
論文 参考訳(メタデータ) (2021-08-03T17:49:09Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
ノイズチャネルの多くの用途でメッセージを確実に送信するために、回路をエンコードしてデコードする。
すべての量子チャネル$T$とすべての$eps>0$に対して、以下に示すゲートエラー確率のしきい値$p(epsilon,T)$が存在し、$C-epsilon$より大きいレートはフォールトトレラント的に達成可能である。
我々の結果は、遠方の量子コンピュータが高レベルのノイズの下で通信する必要があるような、大きな距離での通信やオンチップでの通信に関係している。
論文 参考訳(メタデータ) (2020-09-15T15:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。