論文の概要: Randomized adaptive quantum state preparation
- arxiv url: http://arxiv.org/abs/2301.04201v2
- Date: Fri, 6 Oct 2023 19:29:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-13 15:30:12.472064
- Title: Randomized adaptive quantum state preparation
- Title(参考訳): ランダム化適応量子状態準備
- Authors: Alicia B. Magann, Sophia E. Economou, Christian Arenz
- Abstract要約: コスト関数を最小化し、適応的に構築された量子回路を介して所望の量子状態を作成する。
ほぼ全ての初期状態に対して、対象状態への収束が達成できるという理論的議論と数値的な証拠を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop an adaptive method for quantum state preparation that utilizes
randomness as an essential component and that does not require classical
optimization. Instead, a cost function is minimized to prepare a desired
quantum state through an adaptively constructed quantum circuit, where each
adaptive step is informed by feedback from gradient measurements in which the
associated tangent space directions are randomized. We provide theoretical
arguments and numerical evidence that convergence to the target state can be
achieved for almost all initial states. We investigate different randomization
procedures and develop lower bounds on the expected cost function change, which
allows for drawing connections to barren plateaus and for assessing the
applicability of the algorithm to large-scale problems.
- Abstract(参考訳): 本研究では、ランダム性を必須成分とし、古典的最適化を必要としない量子状態準備のための適応法を開発した。
代わりに、コスト関数を最小化し、適応的に構築された量子回路を通じて所望の量子状態を作成する。
ほぼ全ての初期状態に対して、対象状態への収束が達成できるという理論的議論と数値的な証拠を提供する。
本研究では,不連続高原への接続を可能にし,大規模問題に対するアルゴリズムの適用性を評価するために,異なるランダム化手順を調査し,期待コスト関数変化の低域を開拓する。
関連論文リスト
- Quantum automated learning with provable and explainable trainability [4.305036822025956]
量子自動学習では、変動パラメータが関与せず、トレーニングプロセスが量子状態の準備に変換される。
このようなトレーニングプロセスは、想像的時間進化による量子状態の生成の観点から理解することができることを示す。
この結果は、証明可能で説明可能なトレーニング性を備えた勾配のない非従来型量子学習戦略を確立した。
論文 参考訳(メタデータ) (2025-02-07T19:00:02Z) - Characterizing randomness in parameterized quantum circuits through expressibility and average entanglement [39.58317527488534]
量子回路(PQC)は、その主応用の範囲外ではまだ完全には理解されていない。
我々は、量子ビット接続性に関する制約の下で、PQCにおけるランダム状態の生成を分析する。
生成した状態の分布の均一性の増加と絡み合いの発生との間には,どれだけ急激な関係があるかを示す。
論文 参考訳(メタデータ) (2024-05-03T17:32:55Z) - Solving reaction dynamics with quantum computing algorithms [42.408991654684876]
線形応答によって支配される異なる反応を記述することに関連する応答関数の量子アルゴリズムについて検討する。
我々は原子核物理学の応用に焦点をあて、格子上の量子ビット効率のマッピングを検討し、現実的な散乱シミュレーションに必要な大量の量を効率的に表現することができる。
論文 参考訳(メタデータ) (2024-03-30T00:21:46Z) - Measurement-Based Quantum Approximate Optimization [0.24861619769660645]
近似最適化のための計測ベースの量子コンピューティングプロトコルに焦点をあてる。
我々は,QUBO問題の広範かつ重要なクラスにQAOAを適用するための測定パターンを導出する。
我々は、より伝統的な量子回路に対する我々のアプローチのリソース要件とトレードオフについて論じる。
論文 参考訳(メタデータ) (2024-03-18T06:59:23Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Improved iterative quantum algorithm for ground-state preparation [4.921552273745794]
ハミルトン系の基底状態を作成するために,改良された反復量子アルゴリズムを提案する。
提案手法には,各イテレーションにおける成功確率の向上,測定精度に依存しないサンプリングの複雑さ,ゲートの複雑さの低減,およびアシラリー状態が十分に準備された場合の量子資源のみを必要とするという利点がある。
論文 参考訳(メタデータ) (2022-10-16T05:57:43Z) - Fundamental limitations on optimization in variational quantum
algorithms [7.165356904023871]
そのような短期量子アプリケーションを確立するための主要なパラダイムは、変分量子アルゴリズム(VQA)である。
このようなランダム回路の幅広いクラスにおいて、コスト関数の変動範囲は、高い確率で量子ビット数で指数関数的に消えることを示す。
この結果は、勾配に基づく最適化と勾配のない最適化の制約を自然に統一し、VQAのトレーニングランドスケープに余分な厳しい制約を明らかにすることができる。
論文 参考訳(メタデータ) (2022-05-10T17:14:57Z) - Dynamical learning of a photonics quantum-state engineering process [48.7576911714538]
実験的な高次元量子状態の工学は、いくつかの量子情報プロトコルにとって重要な課題である。
我々は、フォトニック軌道Angular Momentum(OAM)ステートを設計するための自動適応最適化プロトコルを実装した。
このアプローチは、量子情報プロトコルや技術のためのノイズの多い実験タスクを自動最適化するための強力なツールである。
論文 参考訳(メタデータ) (2022-01-14T19:24:31Z) - FLIP: A flexible initializer for arbitrarily-sized parametrized quantum
circuits [105.54048699217668]
任意サイズのパラメタライズド量子回路のためのFLexible Initializerを提案する。
FLIPは任意の種類のPQCに適用することができ、初期パラメータの一般的なセットに頼る代わりに、成功したパラメータの構造を学ぶように調整されている。
本稿では, 3つのシナリオにおいてFLIPを用いることの利点を述べる。不毛な高原における問題ファミリ, 最大カット問題インスタンスを解くPQCトレーニング, 1次元フェルミ-ハッバードモデルの基底状態エネルギーを求めるPQCトレーニングである。
論文 参考訳(メタデータ) (2021-03-15T17:38:33Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
本研究では,量子計測から直接最適化される関数の勾配を推定する問題について検討する。
マルチキュービットパラメトリック量子進化の勾配を推定するアルゴリズムを提供する数学的に正確な公式を導出する。
私たちのアルゴリズムは、利用可能な全ての量子ゲートがノイズである場合でも、いくつかの近似で機能し続けています。
論文 参考訳(メタデータ) (2020-05-20T18:24:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。