論文の概要: Quantum automated learning with provable and explainable trainability
- arxiv url: http://arxiv.org/abs/2502.05264v1
- Date: Fri, 07 Feb 2025 19:00:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:35:52.612345
- Title: Quantum automated learning with provable and explainable trainability
- Title(参考訳): 証明可能で説明可能なトレーニング性を備えた量子自動学習
- Authors: Qi Ye, Shuangyue Geng, Zizhao Han, Weikang Li, L. -M. Duan, Dong-Ling Deng,
- Abstract要約: 量子自動学習では、変動パラメータが関与せず、トレーニングプロセスが量子状態の準備に変換される。
このようなトレーニングプロセスは、想像的時間進化による量子状態の生成の観点から理解することができることを示す。
この結果は、証明可能で説明可能なトレーニング性を備えた勾配のない非従来型量子学習戦略を確立した。
- 参考スコア(独自算出の注目度): 4.305036822025956
- License:
- Abstract: Machine learning is widely believed to be one of the most promising practical applications of quantum computing. Existing quantum machine learning schemes typically employ a quantum-classical hybrid approach that relies crucially on gradients of model parameters. Such an approach lacks provable convergence to global minima and will become infeasible as quantum learning models scale up. Here, we introduce quantum automated learning, where no variational parameter is involved and the training process is converted to quantum state preparation. In particular, we encode training data into unitary operations and iteratively evolve a random initial state under these unitaries and their inverses, with a target-oriented perturbation towards higher prediction accuracy sandwiched in between. Under reasonable assumptions, we rigorously prove that the evolution converges exponentially to the desired state corresponding to the global minimum of the loss function. We show that such a training process can be understood from the perspective of preparing quantum states by imaginary time evolution, where the data-encoded unitaries together with target-oriented perturbations would train the quantum learning model in an automated fashion. We further prove that the quantum automated learning paradigm features good generalization ability with the generalization error upper bounded by the ratio between a logarithmic function of the Hilbert space dimension and the number of training samples. In addition, we carry out extensive numerical simulations on real-life images and quantum data to demonstrate the effectiveness of our approach and validate the assumptions. Our results establish an unconventional quantum learning strategy that is gradient-free with provable and explainable trainability, which would be crucial for large-scale practical applications of quantum computing in machine learning scenarios.
- Abstract(参考訳): 機械学習は量子コンピューティングの最も有望な実用的な応用の1つであると広く信じられている。
既存の量子機械学習スキームでは、モデルパラメータの勾配に決定的に依存する量子古典ハイブリッドアプローチが一般的である。
このようなアプローチは、グローバルなミニマへの証明可能な収束を欠き、量子学習モデルがスケールアップするにつれて実現不可能になる。
ここでは、変動パラメータが関与せず、トレーニングプロセスが量子状態準備に変換される量子自動学習を紹介する。
特に、トレーニングデータをユニタリな操作にエンコードし、これらのユニタリとその逆数の下でランダムな初期状態を反復的に進化させる。
合理的な仮定の下では、進化は損失関数の大域的最小値に対応する所望の状態に指数関数的に収束することを厳密に証明する。
このようなトレーニングプロセスは、データエンコードされたユニタリとターゲット指向の摂動が、量子学習モデルを自動で訓練する、想像的時間進化による量子状態の生成の観点から理解することができる。
さらに、この量子自動学習パラダイムは、ヒルベルト空間次元の対数関数とトレーニングサンプル数との比で上限値の一般化誤差を上限として、優れた一般化能力を有することを証明した。
さらに,本手法の有効性を実証し,仮定を検証するために,実生活画像と量子データについて広範な数値シミュレーションを行った。
本研究は,機械学習シナリオにおける量子コンピューティングの大規模実用化に欠かせない,証明可能で説明可能なトレーニング性を備えた非従来型量子学習戦略を確立した。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
我々は中性原子アナログ量子コンピュータの量子力学を利用してデータを処理する量子貯水池学習アルゴリズムを開発した。
アルゴリズムを実験的に実装し、機械学習タスクの様々なカテゴリで競合性能を達成する。
本研究は,従来の量子相関を有効機械学習に活用する可能性を示すものである。
論文 参考訳(メタデータ) (2024-07-02T18:00:00Z) - Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity [0.0]
平衡伝播(Equilibrium propagation、EP)は、平衡に緩和する古典的なエネルギーモデルに導入され応用された手順である。
ここでは、EPとOnsagerの相互性を直接接続し、これを利用してEPの量子バージョンを導出する。
これは任意の量子系の可観測物の期待値に依存する損失関数の最適化に使うことができる。
論文 参考訳(メタデータ) (2024-06-10T17:22:09Z) - Information-theoretic generalization bounds for learning from quantum data [5.0739329301140845]
古典量子データに基づくトレーニングにより量子学習を記述するための数学的定式化を提案する。
我々は,古典的および量子的情報理論量の観点から,量子学習者の期待する一般化誤差を証明した。
我々の研究は、量子学習に関する量子情報理論的な視点を統一するための基礎を築いた。
論文 参考訳(メタデータ) (2023-11-09T17:21:38Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Understanding quantum machine learning also requires rethinking
generalization [0.3683202928838613]
一般化を理解する従来のアプローチでは、量子モデルの振る舞いを説明できないことを示す。
実験によると、最先端の量子ニューラルネットワークはトレーニングデータのランダムな状態とランダムなラベル付けに正確に適合している。
論文 参考訳(メタデータ) (2023-06-23T12:04:13Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。