InstaGraM: Instance-level Graph Modeling for Vectorized HD Map Learning
- URL: http://arxiv.org/abs/2301.04470v3
- Date: Tue, 24 Dec 2024 09:44:03 GMT
- Title: InstaGraM: Instance-level Graph Modeling for Vectorized HD Map Learning
- Authors: Juyeb Shin, Hyeonjun Jeong, Francois Rameau, Dongsuk Kum,
- Abstract summary: Online high-definition (HD) map construction plays a significant role in accurate estimation of the pose.
Recent advancements in online HD map construction have predominantly investigated on vectorized representation.
We propose a novel HD map learning framework that leverages graph modeling.
- Score: 8.556482588459899
- License:
- Abstract: For scalable autonomous driving, a robust map-based localization system, independent of GPS, is fundamental. To achieve such map-based localization, online high-definition (HD) map construction plays a significant role in accurate estimation of the pose. Although recent advancements in online HD map construction have predominantly investigated on vectorized representation due to its effectiveness, they suffer from computational cost and fixed parametric model, which limit scalability. To alleviate these limitations, we propose a novel HD map learning framework that leverages graph modeling. This framework is designed to learn the construction of diverse geometric shapes, thereby enhancing the scalability of HD map construction. Our approach involves representing the map elements as an instance-level graph by decomposing them into vertices and edges to facilitate accurate and efficient end-to-end vectorized HD map learning. Furthermore, we introduce an association strategy using a Graph Neural Network to efficiently handle the complex geometry of various map elements, while maintaining scalability. Comprehensive experiments on public open dataset show that our proposed network outperforms state-of-the-art model by $1.6$ mAP. We further showcase the superior scalability of our approach compared to state-of-the-art methods, achieving a $4.8$ mAP improvement in long range configuration. Our code is available at https://github.com/juyebshin/InstaGraM.
Related papers
- TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior [70.84644266024571]
We propose to train a perception model to "see" standard definition maps (SDMaps)
We encode SDMap elements into neural spatial map representations and instance tokens, and then incorporate such complementary features as prior information.
Based on the lane segment representation framework, the model simultaneously predicts lanes, centrelines and their topology.
arXiv Detail & Related papers (2024-11-22T06:13:42Z) - Online Vectorized HD Map Construction using Geometry [17.33973935325903]
We propose GeMap, which learns Euclidean shapes and relations of map instances beyond basic perception.
Our method achieves new state-of-the-art performance on the NuScenes and Argoverse 2 datasets.
arXiv Detail & Related papers (2023-12-06T08:26:26Z) - ScalableMap: Scalable Map Learning for Online Long-Range Vectorized HD
Map Construction [42.874195888422584]
We propose a novel end-to-end pipeline for online long-range vectorized high-definition (HD) map construction using on-board camera sensors.
We exploit the properties of map elements to improve the performance of map construction.
arXiv Detail & Related papers (2023-10-20T09:46:24Z) - MapTRv2: An End-to-End Framework for Online Vectorized HD Map Construction [40.07726377230152]
High-definition (HD) map provides abundant and precise static environmental information of the driving scene.
We present textbfMap textbfTRansformer, an end-to-end framework for online vectorized HD map construction.
arXiv Detail & Related papers (2023-08-10T17:56:53Z) - Online Map Vectorization for Autonomous Driving: A Rasterization
Perspective [58.71769343511168]
We introduce a newization-based evaluation metric, which has superior sensitivity and is better suited to real-world autonomous driving scenarios.
We also propose MapVR (Map Vectorization via Rasterization), a novel framework that applies differentiableization to preciseized outputs and then performs geometry-aware supervision on HD maps.
arXiv Detail & Related papers (2023-06-18T08:51:14Z) - HDMapNet: An Online HD Map Construction and Evaluation Framework [23.19001503634617]
HD map construction is a crucial problem for autonomous driving.
Traditional HD maps are coupled with centimeter-level accurate localization which is unreliable in many scenarios.
Online map learning is a more scalable way to provide semantic and geometry priors to self-driving vehicles.
arXiv Detail & Related papers (2021-07-13T18:06:46Z) - HDMapGen: A Hierarchical Graph Generative Model of High Definition Maps [81.86923212296863]
HD maps are maps with precise definitions of road lanes with rich semantics of the traffic rules.
There are only a small amount of real-world road topologies and geometries, which significantly limits our ability to test out the self-driving stack.
We propose HDMapGen, a hierarchical graph generation model capable of producing high-quality and diverse HD maps.
arXiv Detail & Related papers (2021-06-28T17:59:30Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
This paper proposes a novel spatial-spectral HSI classification method via multiple random anchor graphs ensemble learning (RAGE)
Firstly, the local binary pattern is adopted to extract the more descriptive features on each selected band, which preserves local structures and subtle changes of a region.
Secondly, the adaptive neighbors assignment is introduced in the construction of anchor graph, to reduce the computational complexity.
arXiv Detail & Related papers (2021-03-25T09:31:41Z) - DAGMapper: Learning to Map by Discovering Lane Topology [84.12949740822117]
We focus on drawing the lane boundaries of complex highways with many lanes that contain topology changes due to forks and merges.
We formulate the problem as inference in a directed acyclic graphical model (DAG), where the nodes of the graph encode geometric and topological properties of the local regions of the lane boundaries.
We show the effectiveness of our approach on two major North American Highways in two different states and show high precision and recall as well as 89% correct topology.
arXiv Detail & Related papers (2020-12-22T21:58:57Z) - Mix Dimension in Poincar\'{e} Geometry for 3D Skeleton-based Action
Recognition [57.98278794950759]
Graph Convolutional Networks (GCNs) have already demonstrated their powerful ability to model the irregular data.
We present a novel spatial-temporal GCN architecture which is defined via the Poincar'e geometry.
We evaluate our method on two current largest scale 3D datasets.
arXiv Detail & Related papers (2020-07-30T18:23:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.