A Network Science perspective of Graph Convolutional Networks: A survey
- URL: http://arxiv.org/abs/2301.04824v1
- Date: Thu, 12 Jan 2023 06:03:57 GMT
- Title: A Network Science perspective of Graph Convolutional Networks: A survey
- Authors: Mingshan Jia, Bogdan Gabrys and Katarzyna Musial
- Abstract summary: We provide a network science perspective on graph convolutional networks (GCNs)
GCNs integrate node features into graph structures via neighbourhood aggregation and message passing.
Our novel taxonomy classifies GCNs from three structural information angles, i.e., the layer-wise message aggregation scope, the message content, and the overall learning scope.
- Score: 11.18312489268624
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The mining and exploitation of graph structural information have been the
focal points in the study of complex networks. Traditional structural measures
in Network Science focus on the analysis and modelling of complex networks from
the perspective of network structure, such as the centrality measures, the
clustering coefficient, and motifs and graphlets, and they have become basic
tools for studying and understanding graphs. In comparison, graph neural
networks, especially graph convolutional networks (GCNs), are particularly
effective at integrating node features into graph structures via neighbourhood
aggregation and message passing, and have been shown to significantly improve
the performances in a variety of learning tasks. These two classes of methods
are, however, typically treated separately with limited references to each
other. In this work, aiming to establish relationships between them, we provide
a network science perspective of GCNs. Our novel taxonomy classifies GCNs from
three structural information angles, i.e., the layer-wise message aggregation
scope, the message content, and the overall learning scope. Moreover, as a
prerequisite for reviewing GCNs via a network science perspective, we also
summarise traditional structural measures and propose a new taxonomy for them.
Finally and most importantly, we draw connections between traditional
structural approaches and graph convolutional networks, and discuss potential
directions for future research.
Related papers
- Harnessing Collective Structure Knowledge in Data Augmentation for Graph Neural Networks [25.12261412297796]
Graph neural networks (GNNs) have achieved state-of-the-art performance in graph representation learning.
We propose a novel approach, namely collective structure knowledge-augmented graph neural network (CoS-GNN)
arXiv Detail & Related papers (2024-05-17T08:50:00Z) - Topological Neural Networks: Mitigating the Bottlenecks of Graph Neural
Networks via Higher-Order Interactions [1.994307489466967]
This work starts with a theoretical framework to reveal the impact of network's width, depth, and graph topology on the over-squashing phenomena in message-passing neural networks.
The work drifts towards, higher-order interactions and multi-relational inductive biases via Topological Neural Networks.
Inspired by Graph Attention Networks, two topological attention networks are proposed: Simplicial and Cell Attention Networks.
arXiv Detail & Related papers (2024-02-10T08:26:06Z) - Unsupervised Graph Attention Autoencoder for Attributed Networks using
K-means Loss [0.0]
We introduce a simple, efficient, and clustering-oriented model based on unsupervised textbfGraph Attention textbfAutotextbfEncoder for community detection in attributed networks.
The proposed model adeptly learns representations from both the network's topology and attribute information, simultaneously addressing dual objectives: reconstruction and community discovery.
arXiv Detail & Related papers (2023-11-21T20:45:55Z) - BScNets: Block Simplicial Complex Neural Networks [79.81654213581977]
Simplicial neural networks (SNN) have recently emerged as the newest direction in graph learning.
We present Block Simplicial Complex Neural Networks (BScNets) model for link prediction.
BScNets outperforms state-of-the-art models by a significant margin while maintaining low costs.
arXiv Detail & Related papers (2021-12-13T17:35:54Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Representation Learning of Graphs Using Graph Convolutional Multilayer
Networks Based on Motifs [17.823543937167848]
mGCMN is a novel framework which utilizes node feature information and the higher order local structure of the graph.
It will greatly improve the learning efficiency of the graph neural network and promote a brand-new learning mode establishment.
arXiv Detail & Related papers (2020-07-31T04:18:20Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
We study whether Graph Convolutional Networks (GCNs) can optimally integrate node features and topological structures in a complex graph with rich information.
We propose an adaptive multi-channel graph convolutional networks for semi-supervised classification (AM-GCN)
Our experiments show that AM-GCN extracts the most correlated information from both node features and topological structures substantially.
arXiv Detail & Related papers (2020-07-05T08:16:03Z) - Neural networks adapting to datasets: learning network size and topology [77.34726150561087]
We introduce a flexible setup allowing for a neural network to learn both its size and topology during the course of a gradient-based training.
The resulting network has the structure of a graph tailored to the particular learning task and dataset.
arXiv Detail & Related papers (2020-06-22T12:46:44Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - Knowledge Embedding Based Graph Convolutional Network [35.35776808660919]
This paper proposes a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN)
KE-GCN combines the power of Graph Convolutional Network (GCN) in graph-based belief propagation and the strengths of advanced knowledge embedding methods.
Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases.
arXiv Detail & Related papers (2020-06-12T17:12:51Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.