論文の概要: We are Going to the Space -- Part 1: Which device to deploy in a
satellite?
- arxiv url: http://arxiv.org/abs/2301.04954v1
- Date: Thu, 12 Jan 2023 11:51:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-13 14:09:34.321737
- Title: We are Going to the Space -- Part 1: Which device to deploy in a
satellite?
- Title(参考訳): 宇宙へ向かっている - Part 1: 衛星にどのデバイスを展開すべきか?
- Authors: Robert Bayer (1), Julian Priest (1), P{\i}nar T\"oz\"un (1) ((1) IT
University of Copenhagen)
- Abstract要約: 本稿では,宇宙空間における深層学習に基づく画像処理のためのエッジデバイスの性能について検討する。
我々のゴールは、衛星の遅延と電力制約を満たすデバイスを、合理的に正確な結果を得ながら決定することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The shrinkage in sizes of components that make up satellites led to wider and
low cost availability of satellites. As a result, there has been an advent of
smaller organizations having the ability to deploy satellites with a variety of
data-intensive applications to run on them. One popular application is image
analysis to detect, for example, land, ice, clouds, etc. However, the
resource-constrained nature of the devices deployed in satellites creates
additional challenges for this resource-intensive application.
In this paper, we investigate the performance of a variety of edge devices
for deep-learning-based image processing in space. Our goal is to determine the
devices that satisfy the latency and power constraints of satellites while
achieving reasonably accurate results. Our results demonstrate that hardware
accelerators (TPUs, GPUs) are necessary to reach the latency requirements. On
the other hand, state-of-the-art edge devices with GPUs could have a high power
draw, making them unsuitable for deployment on a satellite.
- Abstract(参考訳): 衛星を構成する部品のサイズが縮小し、衛星がより広く低コストで利用可能になった。
その結果、さまざまなデータ集約アプリケーションを備えた衛星を運用する能力を持つ小さな組織が出現した。
例えば、陸地、氷、雲などを検出するための画像解析が一般的なアプリケーションである。
しかし、衛星に展開する装置の資源制約の性質は、この資源集約的な応用にさらなる課題をもたらす。
本稿では,宇宙空間における深層学習に基づく画像処理のためのエッジデバイスの性能について検討する。
我々のゴールは、衛星の遅延と電力制約を満たすデバイスを、合理的に正確な結果を得ることです。
以上の結果から,ハードウェアアクセラレータ(TPU,GPU)がレイテンシ要求に到達するために必要であることを示す。
一方、gpuを搭載した最先端のエッジデバイスは高電力の引き分けが可能であり、衛星への展開には適さない。
関連論文リスト
- Vehicle Perception from Satellite [54.07157185000604]
データセットは、GTA-Vから記録された12の衛星ビデオと14の合成ビデオに基づいて構築されている。
小さなオブジェクトの検出、カウント、密度推定など、いくつかのタスクをサポートする。
128,801両は完全に注釈付けされており、各画像の車両数は0から101まで様々である。
論文 参考訳(メタデータ) (2024-02-01T15:59:16Z) - Stitching Satellites to the Edge: Pervasive and Efficient Federated LEO Satellite Learning [1.3121410433987561]
本稿では,衛星が大規模機械学習(ML)タスクを効率的に実行できるようにする新しいFL-SECフレームワークを提案する。
主な構成要素は、余分な衛星画像を特定して排除するディビジョン・アンド・コンカーによるパーソナライズドラーニングと、軌道毎に集約された「軌道モデル」を生成し、地上局に送る前に再訓練する軌道モデル再訓練である。
我々のアプローチではFL収束時間が30倍近く減少し、衛星のエネルギー消費は1.38ワットまで減少し、例外的な精度は96%まで維持される。
論文 参考訳(メタデータ) (2024-01-28T02:01:26Z) - Characterizing Satellite Geometry via Accelerated 3D Gaussian Splatting [0.0]
本稿では,3次元ガウス散乱に基づく軌道上の衛星のマッピング手法を提案する。
ループ型衛星モックアップにおけるモデルトレーニングと3次元レンダリング性能を実演する。
我々のモデルでは、未知の衛星の高品質な新しいビューを、従来のNeRFベースのアルゴリズムよりも2桁近く高速にトレーニングし、レンダリングすることが可能であることが示されている。
論文 参考訳(メタデータ) (2024-01-05T00:49:56Z) - FedSN: A Federated Learning Framework over Heterogeneous LEO Satellite Networks [18.213174641216884]
多数の低軌道軌道(LEO)衛星が打ち上げられ、SpaceXなどの商業企業によって宇宙に投入された。
LEO衛星が搭載するマルチモーダルセンサにより、通信だけでなく、空間変調認識やリモートセンシング画像分類など、さまざまな機械学習アプリケーションにも機能する。
本稿では,これらの課題に対処するための一般FLフレームワークとしてFedSNを提案し,LEO衛星上でのデータ多様性について検討する。
論文 参考訳(メタデータ) (2023-11-02T14:47:06Z) - Diffusion Models for Interferometric Satellite Aperture Radar [73.01013149014865]
確率拡散モデル (Probabilistic Diffusion Models, PDMs) は、最近、非常に有望な生成モデルのクラスとして登場した。
ここでは、PDMを活用して、レーダーベースの衛星画像データセットを複数生成する。
PDMは複雑で現実的な構造を持つ画像を生成することに成功したが、サンプリング時間は依然として問題である。
論文 参考訳(メタデータ) (2023-08-31T16:26:17Z) - Satellite Image Time Series Analysis for Big Earth Observation Data [50.591267188664666]
本稿では,機械学習を用いた衛星画像時系列解析のためのオープンソースRパッケージである sit について述べる。
本手法は, Cerrado Biome のケーススタディにより, 土地利用と土地被覆マップの精度が高いことを示す。
論文 参考訳(メタデータ) (2022-04-24T15:23:25Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
本稿では,ニューラルネットワークアーキテクチャを利用したポーズ推定ソフトウェアを提案する。
我々は、低消費電力の機械学習アクセラレーターが宇宙での人工知能の活用を可能にしていることを示す。
論文 参考訳(メタデータ) (2022-04-07T08:53:18Z) - ADAPT: An Open-Source sUAS Payload for Real-Time Disaster Prediction and
Response with AI [55.41644538483948]
小型無人航空機システム(sUAS)は、多くの人道支援や災害対応作戦において顕著な構成要素となっている。
我々は,SUAS上にリアルタイムAIとコンピュータビジョンをデプロイするための,オープンソースのADAPTマルチミッションペイロードを開発した。
本研究では,河川氷の状態を監視し,破滅的な洪水現象をタイムリーに予測するための,リアルタイム・飛行中の氷分断の例を示す。
論文 参考訳(メタデータ) (2022-01-25T14:51:19Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
高速物体把握のための完全自律飛行ロボットが提案されている。
追加のサブタスクとして、我々のシステムは、表面に近い極にある気球を自律的にピアスすることができる。
我々のアプローチは、挑戦的な国際競争で検証され、優れた結果が得られました。
論文 参考訳(メタデータ) (2021-12-10T11:49:51Z) - Edge Detection for Satellite Images without Deep Networks [2.741266294612776]
衛星画像解析への最近のアプローチは、ディープラーニングの方法を大きく強調している。
ディープラーニングには、特殊なコンピューティングハードウェアの要件など、いくつかの欠点がある。
巨大な衛星データセットを扱う場合、計算リソースとトレーニングデータアノテーションのコストは禁じられるかもしれない。
論文 参考訳(メタデータ) (2021-05-26T15:47:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。