Close the Sim2real Gap via Physically-based Structured Light Synthetic Data Simulation
- URL: http://arxiv.org/abs/2407.12449v1
- Date: Wed, 17 Jul 2024 09:57:14 GMT
- Title: Close the Sim2real Gap via Physically-based Structured Light Synthetic Data Simulation
- Authors: Kaixin Bai, Lei Zhang, Zhaopeng Chen, Fang Wan, Jianwei Zhang,
- Abstract summary: We introduce an innovative structured light simulation system, generating both RGB and physically realistic depth images.
We create an RGBD dataset tailored for robotic industrial grasping scenarios.
By reducing the sim2real gap and enhancing deep learning training, we facilitate the application of deep learning models in industrial settings.
- Score: 16.69742672616517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the substantial progress in deep learning, its adoption in industrial robotics projects remains limited, primarily due to challenges in data acquisition and labeling. Previous sim2real approaches using domain randomization require extensive scene and model optimization. To address these issues, we introduce an innovative physically-based structured light simulation system, generating both RGB and physically realistic depth images, surpassing previous dataset generation tools. We create an RGBD dataset tailored for robotic industrial grasping scenarios and evaluate it across various tasks, including object detection, instance segmentation, and embedding sim2real visual perception in industrial robotic grasping. By reducing the sim2real gap and enhancing deep learning training, we facilitate the application of deep learning models in industrial settings. Project details are available at https://baikaixinpublic.github.io/structured light 3D synthesizer/.
Related papers
- URDFormer: A Pipeline for Constructing Articulated Simulation Environments from Real-World Images [39.0780707100513]
We present an integrated end-to-end pipeline that generates simulation scenes complete with articulated kinematic and dynamic structures from real-world images.
In doing so, our work provides both a pipeline for large-scale generation of simulation environments and an integrated system for training robust robotic control policies.
arXiv Detail & Related papers (2024-05-19T20:01:29Z) - RaSim: A Range-aware High-fidelity RGB-D Data Simulation Pipeline for Real-world Applications [55.24463002889]
We focus on depth data synthesis and develop a range-aware RGB-D data simulation pipeline (RaSim)
In particular, high-fidelity depth data is generated by imitating the imaging principle of real-world sensors.
RaSim can be directly applied to real-world scenarios without any finetuning and excel at downstream RGB-D perception tasks.
arXiv Detail & Related papers (2024-04-05T08:52:32Z) - Reconstructing Objects in-the-wild for Realistic Sensor Simulation [41.55571880832957]
We present NeuSim, a novel approach that estimates accurate geometry and realistic appearance from sparse in-the-wild data.
We model the object appearance with a robust physics-inspired reflectance representation effective for in-the-wild data.
Our experiments show that NeuSim has strong view synthesis performance on challenging scenarios with sparse training views.
arXiv Detail & Related papers (2023-11-09T18:58:22Z) - Learning from synthetic data generated with GRADE [0.6982738885923204]
We present a framework for generating realistic animated dynamic environments (GRADE) for robotics research.
GRADE supports full simulation control, ROS integration, realistic physics, while being in an engine that produces high visual fidelity images and ground truth data.
We show that, even training using only synthetic data, can generalize well to real-world images in the same application domain.
arXiv Detail & Related papers (2023-05-07T14:13:04Z) - Learning Sim-to-Real Dense Object Descriptors for Robotic Manipulation [4.7246285569677315]
We present Sim-to-Real Dense Object Nets (SRDONs), a dense object descriptor that not only understands the object via appropriate representation but also maps simulated and real data to a unified feature space with pixel consistency.
We demonstrate in experiments that pre-trained SRDONs significantly improve performances on unseen objects and unseen visual environments for various robotic tasks with zero real-world training.
arXiv Detail & Related papers (2023-04-18T02:28:55Z) - Sim2real Transfer Learning for Point Cloud Segmentation: An Industrial
Application Case on Autonomous Disassembly [55.41644538483948]
We present an industrial application case that uses sim2real transfer learning for point cloud data.
We provide insights on how to generate and process synthetic point cloud data.
A novel patch-based attention network is proposed additionally to tackle this problem.
arXiv Detail & Related papers (2023-01-12T14:00:37Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
We present a large-scale benchmark dataset for vision-driven robotic grasping via physics-based metaverse synthesis.
The proposed dataset contains 100,000 images and 25 different object types.
We also propose a new layout-weighted performance metric alongside the dataset for evaluating object detection and segmentation performance.
arXiv Detail & Related papers (2021-12-29T17:23:24Z) - GeoSim: Photorealistic Image Simulation with Geometry-Aware Composition [81.24107630746508]
We present GeoSim, a geometry-aware image composition process that synthesizes novel urban driving scenes.
We first build a diverse bank of 3D objects with both realistic geometry and appearance from sensor data.
The resulting synthetic images are photorealistic, traffic-aware, and geometrically consistent, allowing image simulation to scale to complex use cases.
arXiv Detail & Related papers (2021-01-16T23:00:33Z) - Meta-Sim2: Unsupervised Learning of Scene Structure for Synthetic Data
Generation [88.04759848307687]
In Meta-Sim2, we aim to learn the scene structure in addition to parameters, which is a challenging problem due to its discrete nature.
We use Reinforcement Learning to train our model, and design a feature space divergence between our synthesized and target images that is key to successful training.
We also show that this leads to downstream improvement in the performance of an object detector trained on our generated dataset as opposed to other baseline simulation methods.
arXiv Detail & Related papers (2020-08-20T17:28:45Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.