論文の概要: WIRE: Wavelet Implicit Neural Representations
- arxiv url: http://arxiv.org/abs/2301.05187v1
- Date: Thu, 5 Jan 2023 20:24:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-15 22:57:21.414290
- Title: WIRE: Wavelet Implicit Neural Representations
- Title(参考訳): WIRE:ウェーブレットによるニューラル表現
- Authors: Vishwanath Saragadam, Daniel LeJeune, Jasper Tan, Guha Balakrishnan,
Ashok Veeraraghavan, Richard G. Baraniuk
- Abstract要約: Inlicit Neural representations (INRs) は近年多くの視覚関連領域を進歩させている。
現在のINRは高い精度で設計されているが、ロバスト性も劣っている。
我々は、このトレードオフを示さない新しい、非常に正確で堅牢なINRを開発します。
- 参考スコア(独自算出の注目度): 42.147899723673596
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Implicit neural representations (INRs) have recently advanced numerous
vision-related areas. INR performance depends strongly on the choice of the
nonlinear activation function employed in its multilayer perceptron (MLP)
network. A wide range of nonlinearities have been explored, but, unfortunately,
current INRs designed to have high accuracy also suffer from poor robustness
(to signal noise, parameter variation, etc.). Inspired by harmonic analysis, we
develop a new, highly accurate and robust INR that does not exhibit this
tradeoff. Wavelet Implicit neural REpresentation (WIRE) uses a continuous
complex Gabor wavelet activation function that is well-known to be optimally
concentrated in space-frequency and to have excellent biases for representing
images. A wide range of experiments (image denoising, image inpainting,
super-resolution, computed tomography reconstruction, image overfitting, and
novel view synthesis with neural radiance fields) demonstrate that WIRE defines
the new state of the art in INR accuracy, training time, and robustness.
- Abstract(参考訳): Inlicit Neural representations (INR) は近年多くの視覚関連領域を進歩させている。
INR性能は多層パーセプトロン(MLP)ネットワークで使用される非線形活性化関数の選択に強く依存する。
幅広い非線形性が研究されているが、残念ながら、高精度に設計されている現在のINRも(信号ノイズ、パラメータ変動など)ロバスト性に悩まされている。
調和解析にインスパイアされた我々は,このトレードオフを示さない,高精度で堅牢なINRを開発する。
Wavelet Implicit Neural Representation (WIRE) は、空間周波数に最適に集中し、画像を表現するのに優れたバイアスを持つ、連続的な複雑なGabor WaveletActivation関数を使用する。
幅広い実験(画像のデノイング、画像の塗装、超解像、コンピュータトモグラフィ再構成、画像オーバーフィッティング、ニューラルラディアンスフィールドによる新しいビュー合成)により、WIREがINRの精度、トレーニング時間、ロバストネスの新たな状態を定義することを示した。
関連論文リスト
- Streaming Neural Images [56.41827271721955]
Inlicit Neural Representations (INR) は信号表現の新しいパラダイムであり、画像圧縮にかなりの関心を集めている。
本研究では,INRの計算コスト,不安定な性能,堅牢性などの限界要因について検討する。
論文 参考訳(メタデータ) (2024-09-25T17:51:20Z) - Single-Layer Learnable Activation for Implicit Neural Representation (SL$^{2}$A-INR) [6.572456394600755]
ニューラルネットワークを利用して、座標入力を対応する属性に変換するインプシット表現(INR)は、視覚関連領域において大きな進歩をもたらした。
SL$2$A-INR を単層学習可能なアクティベーション関数として提案し,従来の ReLU ベースの有効性を推し進める。
提案手法は,画像表現,3次元形状再構成,単一画像超解像,CT再構成,新しいビューなど,多様なタスクに優れる。
論文 参考訳(メタデータ) (2024-09-17T02:02:15Z) - Towards a Sampling Theory for Implicit Neural Representations [0.3222802562733786]
Inlicit Neural representations (INRs) は、コンピュータおよび計算画像における逆問題を解決する強力なツールとして登場した。
一般化された重み減衰正規化方式を用いて, 隠蔽層INRから画像の復元方法を示す。
低幅単層INRにより実現された正確な回復画像を得る確率を実証的に評価し、より現実的な連続領域ファントム画像の超解像回復におけるINRの性能を示す。
論文 参考訳(メタデータ) (2024-05-28T17:53:47Z) - Spatiotemporal implicit neural representation for unsupervised dynamic
MRI reconstruction [11.661657147506519]
Inlicit Neuraltruth (INR) は逆問題を解決するための強力なDLベースのツールとして登場した。
本研究では,高度にアンサンプされたk空間データから動的MRI再構成を改善するためのINRに基づく手法を提案する。
提案したINRは、ダイナミックMRI画像を暗黙の関数として表現し、それらをニューラルネットワークにエンコードする。
論文 参考訳(メタデータ) (2022-12-31T05:43:21Z) - A scan-specific unsupervised method for parallel MRI reconstruction via
implicit neural representation [9.388253054229155]
暗黙的神経表現(INR)は、物体の内部連続性を学ぶための新しいディープラーニングパラダイムとして登場した。
提案手法は,アーティファクトやノイズのエイリアスを抑えることにより,既存の手法よりも優れる。
良質な結果と走査特異性により,提案手法は並列MRIのデータ取得をさらに加速させる可能性を秘めている。
論文 参考訳(メタデータ) (2022-10-19T10:16:03Z) - SiNeRF: Sinusoidal Neural Radiance Fields for Joint Pose Estimation and
Scene Reconstruction [147.9379707578091]
NeRFmmは、共同最適化タスクを扱うNeRF(Neural Radiance Fields)である。
NeRFmmは正確なシーン合成とポーズ推定を行うが、難しいシーンで完全に注釈付けされたベースラインを上回るのに苦戦している。
放射光マッピングにおける正弦波活性化を利用する正弦波ニューラルレイディアンス場(SiNeRF)と、効率よく光束を選択するための新しい混合領域サンプリング(MRS)を提案する。
論文 参考訳(メタデータ) (2022-10-10T10:47:51Z) - Deep Impulse Responses: Estimating and Parameterizing Filters with Deep
Networks [76.830358429947]
高雑音および地中設定におけるインパルス応答推定は難しい問題である。
本稿では,ニューラル表現学習の最近の進歩に基づいて,インパルス応答のパラメータ化と推定を行う新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T18:57:23Z) - Exploring Inter-frequency Guidance of Image for Lightweight Gaussian
Denoising [1.52292571922932]
本稿では,周波数帯域を低域から高域に漸進的に洗練するために,IGNetと呼ばれる新しいネットワークアーキテクチャを提案する。
この設計では、より周波数間先行と情報を利用するため、モデルサイズは軽量化でき、競争結果も維持できる。
論文 参考訳(メタデータ) (2021-12-22T10:35:53Z) - NeRF-SR: High-Quality Neural Radiance Fields using Super-Sampling [82.99453001445478]
主に低分解能(LR)入力を用いた高分解能(HR)新規ビュー合成のソリューションであるNeRF-SRを提案する。
提案手法は,多層パーセプトロンを用いて各点密度と色を予測するニューラルレージアンス場(NeRF)上に構築されている。
論文 参考訳(メタデータ) (2021-12-03T07:33:47Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
我々は,真の配列多様体行列の変異チャネルデータから学習した畳み込みニューラルネットワーク(CNN)を導入する。
我々は低SNR体制でCNNを訓練し、すべてのSNRでDoAを予測する。
私たちの堅牢なソリューションは、ワイヤレスアレイセンサーから音響マイクロフォンやソナーまで、いくつかの分野に適用できます。
論文 参考訳(メタデータ) (2020-11-17T12:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。