論文の概要: I-INR: Iterative Implicit Neural Representations
- arxiv url: http://arxiv.org/abs/2504.17364v1
- Date: Thu, 24 Apr 2025 08:27:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.296335
- Title: I-INR: Iterative Implicit Neural Representations
- Title(参考訳): I-INR:反復的帰納的神経表現
- Authors: Ali Haider, Muhammad Salman Ali, Maryam Qamar, Tahir Khalil, Soo Ye Kim, Jihyong Oh, Enzo Tartaglione, Sung-Ho Bae,
- Abstract要約: Implicit Neural Representations (INR) は、ニューラルネットワークによってパラメータ化された連続的な微分可能な関数として信号をモデル化することで、信号処理とコンピュータビジョンに革命をもたらした。
I-INR(Iterative Implicit Neural Representation)は,反復的精製プロセスによる信号再構成を向上する新しいプラグイン・アンド・プレイフレームワークである。
- 参考スコア(独自算出の注目度): 21.060226382403506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit Neural Representations (INRs) have revolutionized signal processing and computer vision by modeling signals as continuous, differentiable functions parameterized by neural networks. However, their inherent formulation as a regression problem makes them prone to regression to the mean, limiting their ability to capture fine details, retain high-frequency information, and handle noise effectively. To address these challenges, we propose Iterative Implicit Neural Representations (I-INRs) a novel plug-and-play framework that enhances signal reconstruction through an iterative refinement process. I-INRs effectively recover high-frequency details, improve robustness to noise, and achieve superior reconstruction quality. Our framework seamlessly integrates with existing INR architectures, delivering substantial performance gains across various tasks. Extensive experiments show that I-INRs outperform baseline methods, including WIRE, SIREN, and Gauss, in diverse computer vision applications such as image restoration, image denoising, and object occupancy prediction.
- Abstract(参考訳): Implicit Neural Representations (INR) は、ニューラルネットワークによってパラメータ化された連続的な微分可能な関数として信号をモデル化することで、信号処理とコンピュータビジョンに革命をもたらした。
しかし、回帰問題としてのそれらの固有の定式化は平均への回帰を難しくし、細部を捉え、高周波情報を保持し、ノイズを効果的に処理する能力を制限する。
これらの課題に対処するため、反復的洗練プロセスを通じて信号再構成を強化する新しいプラグイン・アンド・プレイ・フレームワークであるI-INRを提案する。
I-INRは、高周波の詳細を効果的に回収し、ノイズに対する堅牢性を改善し、より優れた再構成品質を実現する。
我々のフレームワークは既存のINRアーキテクチャとシームレスに統合され、様々なタスクで大幅なパフォーマンス向上を実現しています。
大規模な実験により、I-INRはWIRE、SIREN、Gaussなどのベースライン法よりも、画像復元、画像デノイング、オブジェクト占有率予測などの多様なコンピュータビジョン応用に優れていた。
関連論文リスト
- SR-NeRV: Improving Embedding Efficiency of Neural Video Representation via Super-Resolution [0.0]
Inlicit Neural Representations (INR)は、様々な領域にまたがる複雑な信号をモデル化する能力において、大きな注目を集めている。
汎用超解像(SR)ネットワークを統合したINRに基づく映像表現手法を提案する。
論文 参考訳(メタデータ) (2025-04-30T03:31:40Z) - SING: Semantic Image Communications using Null-Space and INN-Guided Diffusion Models [52.40011613324083]
近年, 無線画像伝送において, 共用音源チャネル符号化システム (DeepJSCC) が顕著な性能を発揮している。
既存の手法では、送信された画像とレシーバーの再構成されたバージョンとの間の歪みを最小限に抑えることに重点を置いており、しばしば知覚的品質を見落としている。
逆問題として,破損した再構成画像から高品質な画像の復元を定式化する新しいフレームワークであるSINGを提案する。
論文 参考訳(メタデータ) (2025-03-16T12:32:11Z) - Dynamic-Aware Spatio-temporal Representation Learning for Dynamic MRI Reconstruction [7.704793488616996]
InRに基づく動的MRI再構成モデルであるDynamic-Aware INR (DA-INR)を提案する。
画像領域におけるダイナミックMRIデータの空間的・時間的連続性を捉え、データの時間的冗長性をモデル構造に明示的に組み込む。
その結果、DA-INRは極端アンサンプ比でも復元品質で他のモデルより優れる。
論文 参考訳(メタデータ) (2025-01-15T12:11:33Z) - SL$^{2}$A-INR: Single-Layer Learnable Activation for Implicit Neural Representation [6.572456394600755]
Inlicit Neural Representation (INR)は、ニューラルネットワークを利用して、座標入力を対応する属性に変換することで、視覚関連領域において大きな進歩をもたらした。
我々は,INRアーキテクチャに新しいアプローチを導入することで,これらの課題を緩和できることを示す。
具体的には,シングルレイヤの学習可能なアクティベーション関数と従来のReLUアクティベーションを用いた合成を組み合わせたハイブリッドネットワークSL$2$A-INRを提案する。
論文 参考訳(メタデータ) (2024-09-17T02:02:15Z) - NeRF-VPT: Learning Novel View Representations with Neural Radiance
Fields via View Prompt Tuning [63.39461847093663]
本研究では,これらの課題に対処するための新しいビュー合成手法であるNeRF-VPTを提案する。
提案するNeRF-VPTは、先行レンダリング結果から得られたRGB情報を、その後のレンダリングステージのインストラクティブな視覚的プロンプトとして機能するカスケーディングビュープロンプトチューニングパラダイムを用いている。
NeRF-VPTは、追加のガイダンスや複雑なテクニックに頼ることなく、トレーニングステージ毎に前のステージレンダリングからRGBデータをサンプリングするだけである。
論文 参考訳(メタデータ) (2024-03-02T22:08:10Z) - INCODE: Implicit Neural Conditioning with Prior Knowledge Embeddings [4.639495398851869]
Inlicit Neural Representation (INR)は、複雑なデータの連続的かつ滑らかな表現を提供するためにニューラルネットワークを活用することで、信号表現に革命をもたらした。
InCODEは、深い事前知識を用いて、INRにおける正弦波ベースの活性化関数の制御を強化する新しいアプローチである。
提案手法は表現力に優れるだけでなく,音声,画像,3次元形状復元などの複雑な課題に対処する能力も拡張している。
論文 参考訳(メタデータ) (2023-10-28T23:16:49Z) - Regularization by Neural Style Transfer for MRI Field-Transfer Reconstruction with Limited Data [2.308563547164654]
ニューラルスタイルトランスファーによる正規化は、磁場-転送再構成を可能にするために、ニューラルスタイルのトランスファーエンジンをデノイザと統合する新しいフレームワークである。
実験の結果,RNSTは様々な解剖学的面にまたがって高品質な画像を再構成できることを示した。
論文 参考訳(メタデータ) (2023-08-21T18:26:35Z) - RBSR: Efficient and Flexible Recurrent Network for Burst
Super-Resolution [57.98314517861539]
バースト超解像(BurstSR)は、高解像度(HR)画像を低解像度(LR)画像と雑音画像から再構成することを目的としている。
本稿では,効率よくフレキシブルなリカレントネットワークでフレーム単位のキューを融合させることを提案する。
論文 参考訳(メタデータ) (2023-06-30T12:14:13Z) - Modality-Agnostic Variational Compression of Implicit Neural
Representations [96.35492043867104]
Inlicit Neural Representation (INR) としてパラメータ化されたデータの関数的ビューに基づくモーダリティ非依存型ニューラル圧縮アルゴリズムを提案する。
潜時符号化と疎性の間のギャップを埋めて、ソフトゲーティング機構に非直線的にマッピングされたコンパクト潜時表現を得る。
このような潜在表現のデータセットを得た後、ニューラル圧縮を用いてモーダリティ非依存空間におけるレート/歪みトレードオフを直接最適化する。
論文 参考訳(メタデータ) (2023-01-23T15:22:42Z) - WIRE: Wavelet Implicit Neural Representations [42.147899723673596]
Inlicit Neural representations (INRs) は近年多くの視覚関連領域を進歩させている。
現在のINRは高い精度で設計されているが、ロバスト性も劣っている。
我々は、このトレードオフを示さない新しい、非常に正確で堅牢なINRを開発します。
論文 参考訳(メタデータ) (2023-01-05T20:24:56Z) - Spatiotemporal implicit neural representation for unsupervised dynamic
MRI reconstruction [11.661657147506519]
Inlicit Neuraltruth (INR) は逆問題を解決するための強力なDLベースのツールとして登場した。
本研究では,高度にアンサンプされたk空間データから動的MRI再構成を改善するためのINRに基づく手法を提案する。
提案したINRは、ダイナミックMRI画像を暗黙の関数として表現し、それらをニューラルネットワークにエンコードする。
論文 参考訳(メタデータ) (2022-12-31T05:43:21Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
MR画像再構成のための最近のディープラーニングに基づく手法は、通常、汎用的なオートエンコーダアーキテクチャを利用する。
OUCR(Over-and-Under Complete Convolu?tional Recurrent Neural Network)を提案する。
提案手法は, トレーニング可能なパラメータの少ない圧縮されたセンシングと, 一般的なディープラーニングに基づく手法に対して, 大幅な改善を実現する。
論文 参考訳(メタデータ) (2021-06-16T15:56:34Z) - Lightweight image super-resolution with enhanced CNN [82.36883027158308]
強い表現力を持つ深部畳み込みニューラルネットワーク(CNN)は、単一画像超解像(SISR)において印象的な性能を達成した
情報抽出・拡張ブロック(IEEB)、再構築ブロック(RB)、情報精製ブロック(IRB)の3つの連続したサブブロックを持つ軽量拡張SR CNN(LESRCNN)を提案する。
IEEBは階層的低分解能(LR)特徴を抽出し、SISRの深い層上の浅い層の記憶能力を高めるために、得られた特徴を段階的に集約する。
RBはグローバルに拡散することで低周波特徴を高周波特徴に変換する
論文 参考訳(メタデータ) (2020-07-08T18:03:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。