論文の概要: Toward General Design Principles for Generative AI Applications
- arxiv url: http://arxiv.org/abs/2301.05578v1
- Date: Fri, 13 Jan 2023 14:37:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-16 15:10:11.725575
- Title: Toward General Design Principles for Generative AI Applications
- Title(参考訳): ジェネレーティブAIアプリケーションのための汎用設計原則に向けて
- Authors: Justin D. Weisz, Michael Muller, Jessica He, Stephanie Houde
- Abstract要約: 生成AIアプリケーションの設計に関する7つの原則を提示する。
生成AIの特徴として、複数の成果と不完全性、探索と制御、メンタルモデルと説明の6つの原則が重視されている。
我々は、生成モデルの有害な出力、誤用、または人的変位の可能性によって引き起こされる可能性のある潜在的な害に対して設計をするようデザイナーに促す。
- 参考スコア(独自算出の注目度): 16.11712547530946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative AI technologies are growing in power, utility, and use. As
generative technologies are being incorporated into mainstream applications,
there is a need for guidance on how to design those applications to foster
productive and safe use. Based on recent research on human-AI co-creation
within the HCI and AI communities, we present a set of seven principles for the
design of generative AI applications. These principles are grounded in an
environment of generative variability. Six principles are focused on designing
for characteristics of generative AI: multiple outcomes & imperfection;
exploration & control; and mental models & explanations. In addition, we urge
designers to design against potential harms that may be caused by a generative
model's hazardous output, misuse, or potential for human displacement. We
anticipate these principles to usefully inform design decisions made in the
creation of novel human-AI applications, and we invite the community to apply,
revise, and extend these principles to their own work.
- Abstract(参考訳): 生成AI技術は、パワー、ユーティリティ、利用で成長している。
生成技術が主流のアプリケーションに組み込まれているため、生産的かつ安全な利用を促進するために、これらのアプリケーションを設計する方法に関するガイダンスが必要である。
HCIとAIコミュニティにおける人間とAIの共創に関する最近の研究に基づいて、生成型AIアプリケーションの設計のための7つの原則を提示する。
これらの原則は、生成的変動の環境に根ざしている。
生成AIの特徴として、複数の成果と不完全性、探索と制御、メンタルモデルと説明の6つの原則が重視されている。
さらに, 生成モデルの有害な出力, 誤用, 人間の移動に対する潜在的な害に対して, 設計者が設計することを推奨する。
我々はこれらの原則を期待し、新しい人間-AIアプリケーションを作成する際になされた設計決定を効果的に通知し、コミュニティにこれらの原則を適用し、修正し、自分たちの仕事に拡張するよう促す。
関連論文リスト
- Survey of User Interface Design and Interaction Techniques in Generative AI Applications [79.55963742878684]
我々は,デザイナやディベロッパの参照として使用できる,さまざまなユーザインタラクションパターンのコンペレーションを作ることを目指している。
また、生成AIアプリケーションの設計についてもっと学ぼうとする人たちの参入障壁を低くしようと努力しています。
論文 参考訳(メタデータ) (2024-10-28T23:10:06Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - Risks and Opportunities of Open-Source Generative AI [64.86989162783648]
Generative AI(Gen AI)の応用は、科学や医学、教育など、さまざまな分野に革命をもたらすことが期待されている。
こうした地震の変化の可能性は、この技術の潜在的なリスクについて活発に議論を巻き起こし、より厳格な規制を要求した。
この規制は、オープンソースの生成AIの誕生する分野を危険にさらす可能性がある。
論文 参考訳(メタデータ) (2024-05-14T13:37:36Z) - Generative AI Models for Different Steps in Architectural Design: A Literature Review [14.910709576423576]
生成AIモデルの原則と進歩を理解し、アーキテクチャアプリケーションにおけるそれらの関連性を分析することが不可欠である。
本稿ではまず,確率拡散モデル(DDPM),3次元生成モデル,基礎モデルを中心に,生成AI技術の概要を紹介する。
建築設計プロセスを6段階に分割し、2020年から現在までの各段階における関連する研究プロジェクトについてレビューする。
論文 参考訳(メタデータ) (2024-03-30T13:25:11Z) - From Cloud to Edge: Rethinking Generative AI for Low-Resource Design
Challenges [7.1341189275030645]
私たちは、エッジで設計するための生成AIの可能性、課題、そして有望なアプローチを検討します。
目的は、設計問題に対する目覚ましいソリューションを作成する際に、生成AIのパワーを活用することである。
論文 参考訳(メタデータ) (2024-02-20T03:59:27Z) - Design Principles for Generative AI Applications [22.587972924039992]
生成AIアプリケーションはユニークな設計課題を提示する。
効果的で安全な使用を促進するユーザエクスペリエンスの設計方法に関するガイダンスが緊急に必要である。
生成型AIアプリケーションの設計に関する6つの原則を提示する。
論文 参考訳(メタデータ) (2024-01-25T19:38:21Z) - Toward General-Purpose Robots via Foundation Models: A Survey and Meta-Analysis [82.59451639072073]
汎用ロボットはどんな環境でも、どんな物体でもシームレスに動作し、様々なスキルを使って様々なタスクをこなす。
コミュニティとしては、特定のタスク用に設計し、特定のデータセットでトレーニングし、特定の環境にデプロイすることで、ほとんどのロボットシステムを制約してきました。
ウェブスケールで大規模で大容量の事前学習型モデルの優れたオープンセット性能とコンテンツ生成能力に感銘を受けて,本調査は,汎用ロボティクスに基礎モデルを適用する方法について検討した。
論文 参考訳(メタデータ) (2023-12-14T10:02:55Z) - From Generative AI to Generative Internet of Things: Fundamentals,
Framework, and Outlooks [82.964958051535]
生成人工知能(GAI)は、現実的なデータを生成し、高度な意思決定を促進する能力を持っている。
GAIを現代のモノのインターネット(IoT)に統合することによって、ジェネレーティブ・インターネット・オブ・モノ(GIoT)が登場し、社会の様々な側面に革命をもたらす大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-10-27T02:58:11Z) - Investigating Explainability of Generative AI for Code through
Scenario-based Design [44.44517254181818]
生成AI(GenAI)技術は成熟し、ソフトウェア工学のようなアプリケーションドメインに適用されています。
私たちは43人のソフトウェアエンジニアと9つのワークショップを開催しました。そこでは、最先端のジェネレーティブAIモデルの実例を使って、ユーザの説明可能性のニーズを導き出しました。
我々の研究は、GenAIのコードに対する説明可能性の必要性を探求し、新しいドメインにおけるXAIの技術開発を人間中心のアプローチがいかに促進するかを実証する。
論文 参考訳(メタデータ) (2022-02-10T08:52:39Z) - Problem examination for AI methods in product design [4.020523898765404]
本稿ではまず,製品設計におけるAI手法の学際領域に関する重要な用語と概念を明らかにする。
重要な貢献は、4つの特徴の分解可能性、相互依存、革新、創造性を使った設計問題の新たな分類である。
これらの概念をAIソリューションに初期のマッピングすることは、設計例を使ってスケッチされ、検証される。
論文 参考訳(メタデータ) (2022-01-19T15:19:29Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。