論文の概要: ML Approach for Power Consumption Prediction in Virtualized Base
Stations
- arxiv url: http://arxiv.org/abs/2301.05764v1
- Date: Fri, 13 Jan 2023 21:25:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-18 19:01:41.980531
- Title: ML Approach for Power Consumption Prediction in Virtualized Base
Stations
- Title(参考訳): 仮想化基地局における消費電力予測のためのML手法
- Authors: Merim Dzaferagic, Jose A. Ayala-Romero and Marco Ruffini
- Abstract要約: 本稿では,無線スケジューラの消費電力予測に関する問題点について述べる。
消費電力関数を学習するためのブラックボックス(ニューラルネットワーク)モデルを提案する。
- 参考スコア(独自算出の注目度): 6.495737609776765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The flexibility introduced with the Open Radio Access Network (O-RAN)
architecture allows us to think beyond static configurations in all parts of
the network. This paper addresses the issue related to predicting the power
consumption of different radio schedulers, and the potential offered by O-RAN
to collect data, train models, and deploy policies to control the power
consumption. We propose a black-box (Neural Network) model to learn the power
consumption function. We compare our approach with a known hand-crafted
solution based on domain knowledge. Our solution reaches similar performance
without any previous knowledge of the application and provides more flexibility
in scenarios where the system behavior is not well understood or the domain
knowledge is not available.
- Abstract(参考訳): open radio access network (o-ran) アーキテクチャで導入された柔軟性により、ネットワークのすべての部分で静的な構成を越えて考えることができます。
本稿では、異なる無線スケジューラの電力消費量の予測と、o-ranがデータ収集、トレーニングモデル、電力消費を制御するためのポリシーの展開に提供している可能性について述べる。
消費電力関数を学習するためのブラックボックス(ニューラルネットワーク)モデルを提案する。
このアプローチを、ドメイン知識に基づいた手作りの既知のソリューションと比較する。
我々のソリューションは、以前のアプリケーションに関する知識なしに同様のパフォーマンスに達し、システムの振る舞いが十分に理解されておらず、ドメインの知識が利用できないシナリオにおいて、より柔軟性を提供します。
関連論文リスト
- Foundation Models for the Electric Power Grid [53.02072064670517]
ファンデーションモデル(FM)がニュースの見出しを支配している。
多様なグリッドデータやトポロジからFMを学習することで、トランスフォーメーション能力が解放されるのではないか、と私たちは主張する。
本稿では,グラフニューラルネットワークに基づく電力グリッドFMの概念,すなわちGridFMについて論じる。
論文 参考訳(メタデータ) (2024-07-12T17:09:47Z) - Explainable Reinforcement Learning-based Home Energy Management Systems using Differentiable Decision Trees [4.573008040057806]
住宅セクターは、太陽光発電、家庭用バッテリー、EVの採用の増加により、柔軟性を損なう主要かつ未解決の源となっている。
微分可能な決定木を用いた強化学習に基づくアプローチを提案する。
このアプローチは、データ駆動強化学習のスケーラビリティと(微分可能)決定木の説明可能性を統合する。
概念実証として,家庭内エネルギー管理問題を用いて提案手法を解析し,その性能を市販のルールベースベースラインと標準ニューラルネットワークベースRLコントローラと比較した。
論文 参考訳(メタデータ) (2024-03-18T16:40:41Z) - A Reinforcement Learning Approach for Performance-aware Reduction in
Power Consumption of Data Center Compute Nodes [0.46040036610482665]
我々はReinforcement Learningを使用して、クラウド計算ノード上での電力供給ポリシーを設計する。
実ハードウェア上でトレーニングされたエージェントが、消費電力とアプリケーションパフォーマンスのバランスをとることで、どのように行動を起こすかを示す。
論文 参考訳(メタデータ) (2023-08-15T23:25:52Z) - Learning Resilient Radio Resource Management Policies with Graph Neural
Networks [124.89036526192268]
我々は、ユーザ当たりの最小容量制約でレジリエントな無線リソース管理問題を定式化する。
有限個のパラメータ集合を用いてユーザ選択と電力制御ポリシーをパラメータ化できることを示す。
このような適応により,提案手法は平均レートと5番目のパーセンタイルレートとの良好なトレードオフを実現する。
論文 参考訳(メタデータ) (2022-03-07T19:40:39Z) - Graph-based Algorithm Unfolding for Energy-aware Power Allocation in
Wireless Networks [27.600081147252155]
我々は,無線通信網におけるエネルギー効率を最大化する新しいグラフ要約フレームワークを開発した。
無線ネットワークデータのモデルに望ましい特性である置換訓練について述べる。
結果は、異なるネットワークトポロジにまたがる一般化可能性を示している。
論文 参考訳(メタデータ) (2022-01-27T20:23:24Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
エッジ対応産業用IoTネットワークにおける計算知能とディープラーニング(DL)の展開方法について検討する。
本稿では,新しいマルチエグジットベースフェデレーションエッジ学習(ME-FEEL)フレームワークを提案する。
特に、提案されたME-FEELは、非常に限られたリソースを持つ産業用IoTネットワークにおいて、最大32.7%の精度を達成することができる。
論文 参考訳(メタデータ) (2021-10-28T08:14:57Z) - Optimal Power Allocation for Rate Splitting Communications with Deep
Reinforcement Learning [61.91604046990993]
このレターでは、レート分割多重アクセスネットワークにおいて、ユーザの電力割り当てを最適化するための新しいフレームワークを紹介します。
ネットワークでは、ユーザのために意図されたメッセージは、単一の共通部分と個々のプライベート部分に分割される。
論文 参考訳(メタデータ) (2021-07-01T06:32:49Z) - Edge Intelligence for Energy-efficient Computation Offloading and
Resource Allocation in 5G Beyond [7.953533529450216]
さらに5Gは、エッジデバイス、エッジサーバ、クラウドの異種機能を活用可能な、エッジクラウドオーケストレーションネットワークである。
マルチユーザ無線ネットワークでは、多様なアプリケーション要件とデバイス間の通信のための様々な無線アクセスモードの可能性により、最適な計算オフロード方式の設計が困難になる。
深層強化学習(Dep Reinforcement Learning, DRL)は、そのような問題に限定的で精度の低いネットワーク情報で対処する新興技術である。
論文 参考訳(メタデータ) (2020-11-17T05:51:03Z) - Scheduling and Power Control for Wireless Multicast Systems via Deep
Reinforcement Learning [33.737301955006345]
無線システムにおけるマルチキャストは、コンテンツ中心ネットワークにおけるユーザ要求の冗長性を利用する方法である。
電力制御と最適スケジューリングは、衰退中の無線マルチキャストネットワークの性能を著しく向上させることができる。
提案手法により, 大規模システムに対して, 電力制御ポリシを学習可能であることを示す。
論文 参考訳(メタデータ) (2020-09-27T15:59:44Z) - Accelerating Deep Reinforcement Learning With the Aid of Partial Model:
Energy-Efficient Predictive Video Streaming [97.75330397207742]
深層強化学習を用いて,モバイルネットワーク上でのエネルギー効率の高いビデオストリーミングのための予測電力割り当てを考案した。
連続状態と行動空間を扱うために、我々はDeep Deterministic Policy gradient (DDPG)アルゴリズムを利用する。
シミュレーションの結果,提案手法は完全大規模チャネル予測に基づいて導出される最適方針に収束することが示された。
論文 参考訳(メタデータ) (2020-03-21T17:36:53Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。