Frozen condition of quantum coherence
- URL: http://arxiv.org/abs/2301.05891v3
- Date: Tue, 9 Apr 2024 08:23:26 GMT
- Title: Frozen condition of quantum coherence
- Authors: Zhaofang Bai, Shuanping Du,
- Abstract summary: We analyse under which dynamical conditions the $l_1$-norm or the relative entropy of coherence can remain unchanged.
We also give a complete classification of coherent states from operational coherence theory.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum coherence as an important physical resource plays the key role in implementing various quantum tasks, whereas quantum coherence is often deteriorated due to the noise. In this paper, we analyse under which dynamical conditions the $l_1$-norm or the relative entropy of coherence can remain unchanged during the whole evolution (freezing coherence). For single qubit systems, a nice formula is given to realize freezing coherence. Conversely, for a $d\ (d>2)$ dimensional system, we identify universal geometric conditions of freezing coherence. This offers an affirmative answer to the open question: how can one determine whether a unital quantum operation can be decomposed as a convex combination of unitary operations [M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, (Cambridge University Press, Cambridge, 2000)]. Based on this analysis, we also give a complete classification of coherent states from operational coherence theory. This builds the counterpart of entanglement classification under LOCC.
Related papers
- Absolute dimensionality of quantum ensembles [41.94295877935867]
The dimension of a quantum state is traditionally seen as the number of superposed distinguishable states in a given basis.
We propose an absolute, i.e.basis-independent, notion of dimensionality for ensembles of quantum states.
arXiv Detail & Related papers (2024-09-03T09:54:15Z) - Quantum steering ellipsoids and quantum obesity in critical systems [0.0]
Quantum obesity (QO) is new function used to quantify quantum correlations beyond entanglement.
We show that QO is a fundamental quantity to observe signature of quantum phase transitions.
arXiv Detail & Related papers (2023-12-19T19:14:08Z) - Quantifying quantum coherence via nonreal Kirkwood-Dirac
quasiprobability [0.0]
Kirkwood-Dirac (KD) quasiprobability is a quantum analog of phase space probability of classical statistical mechanics.
Recent works have revealed the important roles played by the KD quasiprobability in the broad fields of quantum science and quantum technology.
arXiv Detail & Related papers (2023-09-17T04:34:57Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Coherent preorder of quantum states [0.0]
We propose an approach to realize coherence distillation from rank-two mixed coherent states to $q$-level maximally coherent states.
One scheme of coherence manipulation between rank-two mixed states is also presented.
arXiv Detail & Related papers (2020-10-29T02:33:58Z) - Quantum coherence as a signature of chaos [0.0]
We quantify the connection between quantum coherence and quantum chaos at two different levels: quantum states and quantum channels.
We numerically study the coherence of chaotic-vs.integrable eigenstates and find excellent agreement with random matrix theory.
arXiv Detail & Related papers (2020-09-06T15:54:54Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Distribution of quantum coherence and quantum phase transition in the
Ising system [2.318473106845779]
Quantifying quantum coherence of a given system plays an important role in quantum information science.
We propose an analysis on the critical behavior of two types Ising systems when distribution of quantum coherence.
arXiv Detail & Related papers (2020-01-29T07:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.