論文の概要: Learning Near-Optimal Intrusion Responses Against Dynamic Attackers
- arxiv url: http://arxiv.org/abs/2301.06085v1
- Date: Wed, 11 Jan 2023 16:36:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-29 14:17:00.220208
- Title: Learning Near-Optimal Intrusion Responses Against Dynamic Attackers
- Title(参考訳): 動的攻撃者に対する準最適侵入応答の学習
- Authors: Kim Hammar and Rolf Stadler
- Abstract要約: 自動侵入応答について検討し,攻撃者とディフェンダーとの相互作用を最適な停止ゲームとして定式化する。
準最適ディフェンダー戦略を得るために,近似を用いてナッシュリリアを学習する架空のセルフプレイアルゴリズムを開発した。
このアプローチは、実用的なITインフラストラクチャのための効果的なディフェンダー戦略を生み出すことができる、と私たちは主張する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We study automated intrusion response and formulate the interaction between
an attacker and a defender as an optimal stopping game where attack and defense
strategies evolve through reinforcement learning and self-play. The
game-theoretic modeling enables us to find defender strategies that are
effective against a dynamic attacker, i.e. an attacker that adapts its strategy
in response to the defender strategy. Further, the optimal stopping formulation
allows us to prove that optimal strategies have threshold properties. To obtain
near-optimal defender strategies, we develop Threshold Fictitious Self-Play
(T-FP), a fictitious self-play algorithm that learns Nash equilibria through
stochastic approximation. We show that T-FP outperforms a state-of-the-art
algorithm for our use case. The experimental part of this investigation
includes two systems: a simulation system where defender strategies are
incrementally learned and an emulation system where statistics are collected
that drive simulation runs and where learned strategies are evaluated. We argue
that this approach can produce effective defender strategies for a practical IT
infrastructure.
- Abstract(参考訳): 攻撃と防御戦略が強化学習と自己遊びを通じて進化する最適停止ゲームとして、自動侵入応答を研究し、攻撃者と防御者の相互作用を定式化する。
ゲーム理論のモデリングにより、動的攻撃者、すなわち防御戦略に応じて戦略を適用する攻撃者に対して効果的な防御戦略を見つけることができる。
さらに, 最適停止定式化により, 最適戦略がしきい値特性を持つことを示すことができる。
確率近似によりナッシュ平衡を学習する架空の自己プレーアルゴリズムであるThreshold Fictitious Self-Play (T-FP) を開発した。
我々は,T-FPが我々のユースケースに対して最先端のアルゴリズムより優れていることを示す。
本研究の実験的部分は,ディフェンダー戦略を段階的に学習するシミュレーションシステムと,シミュレーションを実行する統計を収集し,学習戦略を評価するエミュレーションシステムである。
このアプローチは、実用的なITインフラストラクチャのための効果的なディフェンダー戦略を生み出すことができる、と私たちは主張する。
関連論文リスト
- Optimizing Cyber Defense in Dynamic Active Directories through Reinforcement Learning [10.601458163651582]
本稿では,動的実世界のネットワークにおけるエッジブロッキングACO戦略の欠如に対処する。
具体的には、組織的Active Directory(AD)システムのサイバーセキュリティ脆弱性を対象とする。
ADシステムを静的エンティティとみなす、エッジブロッキング防衛に関する既存の文献とは異なり、本研究では、それらの動的性質を認識してこれに対応する。
論文 参考訳(メタデータ) (2024-06-28T01:37:46Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
本稿では,相互モダリティ最適化スキームにおける敵攻撃を生成する新しい手法を提案する。
我々の手法は最先端の攻撃方法より優れており、プラグイン・アンド・プレイ・ソリューションとして容易にデプロイできる。
論文 参考訳(メタデータ) (2023-12-20T05:06:01Z) - Optimal Attack and Defense for Reinforcement Learning [11.36770403327493]
敵RLでは、外部攻撃者は、環境との相互作用を操作できる。
我々は、攻撃者が予想される報酬を最大化するステルス攻撃を設計する際の問題を示す。
被害者に対する最適な防衛方針は,Stackelbergゲームに対する解決策として計算できる,と我々は主張する。
論文 参考訳(メタデータ) (2023-11-30T21:21:47Z) - Scalable Learning of Intrusion Responses through Recursive Decomposition [0.0]
本稿では,ITインフラへの自動侵入応答と,攻撃者と防御者との相互作用を部分的に観察されたゲームとして検討する。
この問題を解決するために、我々は、強化学習と均衡に向けた自己プレイを通じて、攻撃戦略と防衛戦略が共進化するアプローチに従う。
近似により平衡を学習するDFSP(Decompositional Fictitious Self-Play)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-06T18:12:07Z) - A Multi-objective Memetic Algorithm for Auto Adversarial Attack
Optimization Design [1.9100854225243937]
良く設計された敵防衛戦略は、敵の例に対するディープラーニングモデルの堅牢性を改善することができる。
防御モデルを考えると、計算負担が少なく、ロバストな精度の低い効率的な敵攻撃を更に活用する必要がある。
本稿では,防衛モデルに対する準最適攻撃の自動探索を実現する自動対向攻撃最適化設計のための多目的メメティックアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-15T03:03:05Z) - Learning Security Strategies through Game Play and Optimal Stopping [0.0]
強化学習を用いた自動侵入防止について検討した。
我々は攻撃者とディフェンダーとの相互作用を最適な停止ゲームとして定式化する。
最適なディフェンダー戦略を得るために,架空の自己再生アルゴリズムであるT-FPを導入する。
論文 参考訳(メタデータ) (2022-05-29T15:30:00Z) - LAS-AT: Adversarial Training with Learnable Attack Strategy [82.88724890186094]
LAS-ATと呼ばれる「学習可能な攻撃戦略」は、モデル堅牢性を改善するための攻撃戦略を自動生成することを学ぶ。
当社のフレームワークは,強靭性向上のためのトレーニングにAEを使用するターゲットネットワークと,AE生成を制御するための攻撃戦略を生成する戦略ネットワークで構成されている。
論文 参考訳(メタデータ) (2022-03-13T10:21:26Z) - Projective Ranking-based GNN Evasion Attacks [52.85890533994233]
グラフニューラルネットワーク(GNN)は、グラフ関連のタスクに対して、有望な学習方法を提供する。
GNNは敵の攻撃の危険にさらされている。
論文 参考訳(メタデータ) (2022-02-25T21:52:09Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
ネットワーク分類器に対するブラックボックス攻撃について検討する。
我々は、アタッカー・ディフェンダーの固定点がそれ自体、複雑な位相遷移を持つ一般サムゲームであると主張する。
攻撃防御力学の研究には連続的な学習手法が必要であることを示す。
論文 参考訳(メタデータ) (2021-11-23T23:42:16Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - Robust Federated Learning with Attack-Adaptive Aggregation [45.60981228410952]
フェデレート学習は、モデル中毒やバックドア攻撃など、様々な攻撃に対して脆弱である。
本研究では,ロバスト学習のためのアタック・アダプティブ・アグリゲーション戦略を提案する。
論文 参考訳(メタデータ) (2021-02-10T04:23:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。