Hybrid quantum-classical convolutional neural networks to improve
molecular protein binding affinity predictions
- URL: http://arxiv.org/abs/2301.06331v2
- Date: Wed, 18 Jan 2023 18:03:06 GMT
- Title: Hybrid quantum-classical convolutional neural networks to improve
molecular protein binding affinity predictions
- Authors: L. Domingo and M. Djukic and C. Johnson and F. Borondo
- Abstract summary: We present a hybrid quantum-classical convolutional neural network, which is able to reduce by 20% the complexity of the classical network.
It results in a significant time savings of up to 40% in the training process, which means a meaningful speed up of the drug discovery process.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: One of the main challenges in drug discovery is to find molecules that bind
specifically and strongly to their target protein while having minimal binding
to other proteins. By predicting binding affinity, it is possible to identify
the most promising candidates from a large pool of potential compounds,
reducing the number of compounds that need to be tested experimentally.
Recently, deep learning methods have shown superior performance than
traditional computational methods for making accurate predictions on large
datasets. However, the complexity and time-consuming nature of these methods
have limited their usage and development. Quantum machine learning is an
emerging technology that has the potential to improve many classical machine
learning algorithms. In this work we present a hybrid quantum-classical
convolutional neural network, which is able to reduce by 20% the complexity of
the classical network while maintaining optimal performance in the predictions.
Additionally, it results in a significant time savings of up to 40% in the
training process, which means a meaningful speed up of the drug discovery
process.
Related papers
- Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
A major challenge for AI-driven drug discovery is the scarcity of high-quality data.
We develop a formula enhanced mul-ti-task learning (PEMAL) method that predicts four key parameters of pharmacokinetics simultaneously.
Our experiments reveal that PEMAL significantly lowers the data demand, compared to typical Graph Neural Networks.
arXiv Detail & Related papers (2024-04-16T07:42:55Z) - Hybrid quantum cycle generative adversarial network for small molecule
generation [0.0]
This work introduces several new generative adversarial network models based on engineering integration of parametrized quantum circuits into known molecular generative adversarial networks.
The introduced machine learning models incorporate a new multi- parameter reward function grounded in reinforcement learning principles.
arXiv Detail & Related papers (2023-12-28T14:10:26Z) - A hybrid quantum-classical fusion neural network to improve protein-ligand binding affinity predictions for drug discovery [0.0]
This paper introduces a novel hybrid quantum-classical deep learning model tailored for binding affinity prediction in drug discovery.
Specifically, the proposed model synergistically integrates 3D and spatial graph convolutional neural networks within an optimized quantum architecture.
Simulation results demonstrate a 6% improvement in prediction accuracy relative to existing classical models, as well as a significantly more stable convergence performance compared to previous classical approaches.
arXiv Detail & Related papers (2023-09-06T11:56:33Z) - On the Interplay of Subset Selection and Informed Graph Neural Networks [3.091456764812509]
This work focuses on predicting the molecules atomization energy in the QM9 dataset.
We show how maximizing molecular diversity in the training set selection process increases the robustness of linear and nonlinear regression techniques.
We also check the reliability of the predictions made by the graph neural network with a model-agnostic explainer.
arXiv Detail & Related papers (2023-06-15T09:09:27Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
Quantum neural networks (QNNs) have become an important tool for understanding the physical world, but their advantages and limitations are not fully understood.
Here we investigate the problem-dependent power of QCs on multi-class classification tasks.
Our work sheds light on the problem-dependent power of QNNs and offers a practical tool for evaluating their potential merit.
arXiv Detail & Related papers (2022-12-29T10:46:40Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
Recent developments in artificial neural networks, particularly deep learning (DL), are reviewed in detail.
Both hybrid and pure machine learning (ML) methods are discussed.
History and limitations of AI are recounted and discussed, with particular attention at pointing out misstatements or misconceptions of the classics.
arXiv Detail & Related papers (2022-12-18T02:03:00Z) - LIMO: Latent Inceptionism for Targeted Molecule Generation [14.391216237573369]
We present Latent Inceptionism on Molecules (LIMO), which significantly accelerates molecule generation with an inceptionism-like technique.
Comprehensive experiments show that LIMO performs competitively on benchmark tasks.
One of our generated drug-like compounds has a predicted $K_D$ of $6 cdot 10-14$ M against the human estrogen receptor.
arXiv Detail & Related papers (2022-06-17T21:05:58Z) - Drug Discovery Approaches using Quantum Machine Learning [10.321495133438242]
Deep generative and predictive models are widely adopted to assist in drug development.
We propose a suite of quantum machine learning techniques to generate small drug molecules, classify binding pockets in proteins, and generate large drug molecules.
arXiv Detail & Related papers (2021-04-01T19:53:06Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Explainable Deep Relational Networks for Predicting Compound-Protein
Affinities and Contacts [80.69440684790925]
DeepRelations is a physics-inspired deep relational network with intrinsically explainable architecture.
It shows superior interpretability to the state-of-the-art.
It boosts the AUPRC of contact prediction 9.5, 16.9, 19.3 and 5.7-fold for the test, compound-unique, protein-unique, and both-unique sets.
arXiv Detail & Related papers (2019-12-29T00:14:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.