論文の概要: Training Methods of Multi-label Prediction Classifiers for Hyperspectral
Remote Sensing Images
- arxiv url: http://arxiv.org/abs/2301.06874v1
- Date: Tue, 17 Jan 2023 13:30:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-18 13:59:53.262590
- Title: Training Methods of Multi-label Prediction Classifiers for Hyperspectral
Remote Sensing Images
- Title(参考訳): ハイパースペクトルリモートセンシング画像のためのマルチラベル予測分類器の訓練方法
- Authors: Salma Haidar and Jos\'e Oramas
- Abstract要約: ハイパースペクトルリモートセンシング画像に対するマルチラベル・パッチレベルの分類法を提案する。
リモートセンシング画像から抽出した空間次元を縮小したパッチと全スペクトル深度を用いた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With their combined spectral depth and geometric resolution, hyperspectral
remote sensing images embed a wealth of complex, non-linear information that
challenges traditional computer vision techniques. Yet, deep learning methods
known for their representation learning capabilities prove more suitable for
handling such complexities. Unlike applications that focus on single-label,
pixel-level classification methods for hyperspectral remote sensing images, we
propose a multi-label, patch-level classification method based on a
two-component deep-learning network. We use patches of reduced spatial
dimension and a complete spectral depth extracted from the remote sensing
images. Additionally, we investigate three training schemes for our network:
Iterative, Joint, and Cascade. Experiments suggest that the Joint scheme is the
best-performing scheme; however, its application requires an expensive search
for the best weight combination of the loss constituents. The Iterative scheme
enables the sharing of features between the two parts of the network at the
early stages of training. It performs better on complex data with multi-labels.
Further experiments showed that methods designed with different architectures
performed well when trained on patches extracted and labeled according to our
sampling method.
- Abstract(参考訳): スペクトル深度と幾何分解能の組み合わせにより、ハイパースペクトルリモートセンシング画像は、従来のコンピュータビジョン技術に挑戦する複雑な非線形情報を埋め込んでいる。
しかし、その表現学習能力で知られるディープラーニング手法は、そのような複雑さを扱うのにより適している。
ハイパースペクトルリモートセンシング画像の単一ラベル・ピクセルレベル分類に焦点をあてたアプリケーションとは異なり,2成分深層学習ネットワークに基づくマルチラベル・パッチレベル分類手法を提案する。
リモートセンシング画像から抽出した空間次元を縮小したパッチと全スペクトル深度を用いた。
さらに,ネットワークのための3つのトレーニングスキーム(イテレーティブ,ジョイント,カスケード)を調査した。
実験により、ジョイントスキームは最もパフォーマンスの高いスキームであることが示唆されるが、その応用には損失成分の最適重みの組み合わせの探索が必要となる。
イテレーティブスキームは、トレーニングの初期段階において、ネットワークの2つの部分間で機能の共有を可能にする。
マルチラベルで複雑なデータを改善する。
さらに, 抽出およびラベル付けを行った場合, 異なるアーキテクチャで設計した手法が良好に動作することを示した。
関連論文リスト
- Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
本稿では、畳み込みニューラルネットワークを用いて偏光SAR画像のスペックルを除去するための完全なフレームワークを提案する。
実験により,提案手法はスペックル低減と分解能保存の両方において例外的な結果をもたらすことが示された。
論文 参考訳(メタデータ) (2024-08-28T10:07:17Z) - DiverseNet: Decision Diversified Semi-supervised Semantic Segmentation Networks for Remote Sensing Imagery [17.690698736544626]
トレーニング中の精度と多様性を同時に向上し,マルチヘッド・マルチモデル半教師付き学習アルゴリズムを探索するDiverseNetを提案する。
DiverseNetファミリーで提案されている2つの手法、すなわちDiverseHeadとDiverseModelは、広く利用されている4つのリモートセンシング画像データセットにおいて、セマンティックセマンティックセマンティクスの性能を向上させる。
論文 参考訳(メタデータ) (2023-11-22T22:20:10Z) - Scene Change Detection Using Multiscale Cascade Residual Convolutional
Neural Networks [0.0]
シーン変化検出は、デジタル画像の画素を前景と背景領域に分割する処理問題である。
本研究では,Residual Processing Moduleを統合した畳み込みニューラルネットワークを用いた新しいマルチスケールResidual Processing Moduleを提案する。
2つの異なるデータセットで実施された実験は、提案手法の全体的な有効性をサポートし、それぞれが$boldsymbol0.9622$と$boldsymbol0.9664$ over Change Detection 2014とPetrobrasROUTESデータセットの全体的な有効性を達成する。
論文 参考訳(メタデータ) (2022-12-20T16:48:51Z) - Learning Contrastive Representation for Semantic Correspondence [150.29135856909477]
セマンティックマッチングのためのマルチレベルコントラスト学習手法を提案する。
画像レベルのコントラスト学習は、畳み込み特徴が類似したオブジェクト間の対応を見出すための鍵となる要素であることを示す。
論文 参考訳(メタデータ) (2021-09-22T18:34:14Z) - Towards Interpretable Deep Metric Learning with Structural Matching [86.16700459215383]
より透過的な埋め込み学習のための深層解釈可能なメトリック学習(DIML)法を提案する。
本手法は,既製のバックボーンネットワークやメトリック学習手法に適用可能な,モデルに依存しない手法である。
我々は,CUB200-2011,Cars196,Stanford Online Productsの3つの大規模メトリクス学習ベンチマークで評価を行った。
論文 参考訳(メタデータ) (2021-08-12T17:59:09Z) - Unifying Remote Sensing Image Retrieval and Classification with Robust
Fine-tuning [3.6526118822907594]
新しい大規模トレーニングおよびテストデータセットであるSF300で、リモートセンシングイメージの検索と分類を統一することを目指しています。
本研究では,ImageNetの事前学習ベースラインと比較して,9つのデータセットの検索性能と分類性能を体系的に向上させることを示す。
論文 参考訳(メタデータ) (2021-02-26T11:01:30Z) - Spectral Analysis Network for Deep Representation Learning and Image
Clustering [53.415803942270685]
本稿ではスペクトル分析に基づく教師なし深層表現学習のための新しいネットワーク構造を提案する。
パッチレベルで画像間の局所的な類似性を識別できるため、閉塞に対してより堅牢である。
クラスタリングに親しみやすい表現を学習し、データサンプル間の深い相関を明らかにすることができる。
論文 参考訳(メタデータ) (2020-09-11T05:07:15Z) - Sparse Coding Driven Deep Decision Tree Ensembles for Nuclear
Segmentation in Digital Pathology Images [15.236873250912062]
デジタル病理画像セグメンテーションタスクにおいて、ディープニューラルネットワークと高い競争力を持つ、容易に訓練されながら強力な表現学習手法を提案する。
ScD2TEと略すこの手法はスパースコーディング駆動の深層決定木アンサンブルと呼ばれ、表現学習の新しい視点を提供する。
論文 参考訳(メタデータ) (2020-08-13T02:59:31Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
本稿では,前立腺領域を高速に局在させる第1段階と,前立腺領域を正確に区分する第2段階の2段階のフレームワークを提案する。
マルチタスクネットワークにおけるボクセルワイドサンプリングによる新しいオンラインメトリック学習モジュールを提案する。
本手法は,従来のクロスエントロピー学習法やDice損失学習法と比較して,より代表的なボクセルレベルの特徴を効果的に学習することができる。
論文 参考訳(メタデータ) (2020-05-15T10:37:02Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z) - Contextual Encoder-Decoder Network for Visual Saliency Prediction [42.047816176307066]
本稿では,大規模な画像分類タスクに基づいて事前学習した畳み込みニューラルネットワークに基づくアプローチを提案する。
得られた表現をグローバルなシーン情報と組み合わせて視覚的サリエンシを正確に予測する。
最先端技術と比較して、このネットワークは軽量な画像分類バックボーンに基づいている。
論文 参考訳(メタデータ) (2019-02-18T16:15:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。