論文の概要: Enhancing quantum computer performance via symmetrization
- arxiv url: http://arxiv.org/abs/2301.07233v1
- Date: Wed, 18 Jan 2023 00:15:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-19 17:11:23.401695
- Title: Enhancing quantum computer performance via symmetrization
- Title(参考訳): シンメトリゼーションによる量子コンピュータの性能向上
- Authors: Andrii Maksymov, Jason Nguyen, Yunseong Nam, Igor Markov
- Abstract要約: 本稿では,量子コンピュータの性能向上を図るため,対称性と非線形アグリゲーションに基づく手法を提案する。
商用のトラップオン量子コンピュータでは、量子ビットやゲートのオーバーヘッドを伴わずに、複数の実用的なアルゴリズムの性能を100倍向上させる。
- 参考スコア(独自算出の注目度): 0.7136933021609078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large quantum computers promise to solve some critical problems not solvable
otherwise. However, modern quantum technologies suffer various imperfections
such as control errors and qubit decoherence, inhibiting their potential
utility. The overheads of quantum error correction are too great for near-term
quantum computers, whereas error-mitigation strategies that address specific
device imperfections may lose relevance as devices improve. To enhance the
performance of quantum computers with high-quality qubits, we introduce a
strategy based on symmetrization and nonlinear aggregation. On a commercial
trapped-ion quantum computer, it improves performance of multiple practical
algorithms by 100x with no qubit or gate overhead.
- Abstract(参考訳): 大規模量子コンピュータは、そうでなければ解決できないいくつかの重要な問題を解決することを約束する。
しかし、現代の量子技術は制御誤差やクビットデコヒーレンスなどの様々な不完全性に悩まされ、その潜在的な効用を阻害する。
量子誤差補正のオーバーヘッドは、短期的な量子コンピュータには大きすぎるが、特定のデバイス不完全に対処するエラー緩和戦略は、デバイスが改善するにつれて関連性を失う可能性がある。
量子コンピュータの性能を高品質な量子ビットで向上するために,対称性と非線形アグリゲーションに基づく戦略を導入する。
商用のトラップイオン量子コンピュータでは、量子ビットやゲートオーバヘッドなしで、複数の実用的なアルゴリズムのパフォーマンスを100倍向上させる。
関連論文リスト
- Quantum Error Correction near the Coding Theoretical Bound [0.0]
古典的LDPC符号から構築した量子誤り訂正符号について述べる。
これらの符号は物理量子ビット数の線形計算複雑性を維持しながらハッシュ境界に近づく。
この結果は、大規模でフォールトトレラントな量子コンピュータを実現するための経路を確立する。
論文 参考訳(メタデータ) (2024-12-30T18:48:54Z) - Hardware-Efficient Fault Tolerant Quantum Computing with Bosonic Grid States in Superconducting Circuits [0.0]
この観点の原稿は、ボソニックなコード、特にグリッド状態のエンコーディングが、スケーラブルなフォールトトレラント量子コンピューティングへの経路を提供する方法を記述している。
ボソニックモードのヒルベルト空間を利用することで、量子誤差補正は単一の物理単位レベルで動作することができる。
論理クロックレートがMHzのゲートベースの量子コンピューティングプロセッサにおいて,フォールトトレランスを達成するための最短経路である,と我々は主張する。
論文 参考訳(メタデータ) (2024-09-09T17:20:06Z) - QuBEC: Boosting Equivalence Checking for Quantum Circuits with QEC
Embedding [4.15692939468851]
本稿では,従来の手法に比べてレイテンシの低い量子同値チェック手法QuBECを提案する。
提案手法は,ベンチマーク回路の検証時間を最大271.49倍に短縮する。
論文 参考訳(メタデータ) (2023-09-19T16:12:37Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
量子ゲート理論の基本的な前提は、量子ゲートはフォールトトレランスの誤差閾値を超えることなく、大きなプロセッサにスケールできるということである。
ここでは、このような問題を克服できる戦略について報告する。
我々は、68個の周波数可変ビットの周波数軌跡をコレオグラフィーして、超伝導エラー中に単一量子ビットを実行することを示した。
論文 参考訳(メタデータ) (2023-08-04T13:39:46Z) - The Future of Quantum Computing with Superconducting Qubits [2.6668731290542222]
量子処理ユニット(QPU)の出現に伴い、計算パラダイムの分岐点が見られます。
超多項式スピードアップによる計算の可能性を抽出し、量子アルゴリズムを実現するには、量子誤り訂正技術の大幅な進歩が必要になる可能性が高い。
長期的には、より効率的な量子誤り訂正符号を実現するために、2次元トポロジ以上の量子ビット接続を利用するハードウェアが見られます。
論文 参考訳(メタデータ) (2022-09-14T18:00:03Z) - Quantum Error Correction with Quantum Autoencoders [0.0]
量子ニューラルネットワークをトレーニングして,能動的検出と誤り訂正のための最適な戦略を学習する方法を示す。
量子オートエンコーダの復号化能力は、特定の状態の保護に限らず、論理的コード空間全体に拡張されることを強調した。
論文 参考訳(メタデータ) (2022-02-01T16:55:14Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
本稿では,量子状態の知識を必要とせず,量子回路の可換性を検証する回路指向対称性検証を提案する。
特に、従来の量子領域形式を回路指向安定化器に一般化するフーリエ時間安定化器(STS)手法を提案する。
論文 参考訳(メタデータ) (2021-12-27T21:15:35Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Deterministic correction of qubit loss [48.43720700248091]
量子ビットの損失は、大規模かつフォールトトレラントな量子情報プロセッサに対する根本的な障害の1つである。
トポロジカル曲面符号の最小インスタンスに対して、量子ビット損失検出と補正の完全なサイクルの実装を実験的に実証した。
論文 参考訳(メタデータ) (2020-02-21T19:48:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。