PTA-Det: Point Transformer Associating Point cloud and Image for 3D
Object Detection
- URL: http://arxiv.org/abs/2301.07301v1
- Date: Wed, 18 Jan 2023 04:35:49 GMT
- Title: PTA-Det: Point Transformer Associating Point cloud and Image for 3D
Object Detection
- Authors: Rui Wan, Tianyun Zhao, Wei Zhao
- Abstract summary: Most multi-modal detection methods perform even worse than LiDAR-only methods.
A Pseudo Point Cloud Generation Network is proposed to convert image information by pseudo points.
The features of LiDAR points and pseudo points from image can be deeply fused under a unified point-based representation.
- Score: 3.691671505269693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In autonomous driving, 3D object detection based on multi-modal data has
become an indispensable approach when facing complex environments around the
vehicle. During multi-modal detection, LiDAR and camera are simultaneously
applied for capturing and modeling. However, due to the intrinsic discrepancies
between the LiDAR point and camera image, the fusion of the data for object
detection encounters a series of problems. Most multi-modal detection methods
perform even worse than LiDAR-only methods. In this investigation, we propose a
method named PTA-Det to improve the performance of multi-modal detection.
Accompanied by PTA-Det, a Pseudo Point Cloud Generation Network is proposed,
which can convert image information including texture and semantic features by
pseudo points. Thereafter, through a transformer-based Point Fusion Transition
(PFT) module, the features of LiDAR points and pseudo points from image can be
deeply fused under a unified point-based representation. The combination of
these modules can conquer the major obstacle in feature fusion across
modalities and realizes a complementary and discriminative representation for
proposal generation. Extensive experiments on the KITTI dataset show the
PTA-Det achieves a competitive result and support its effectiveness.
Related papers
- Boosting 3D Object Detection with Semantic-Aware Multi-Branch Framework [44.44329455757931]
In autonomous driving, LiDAR sensors are vital for acquiring 3D point clouds, providing reliable geometric information.
Traditional sampling methods of preprocessing often ignore semantic features, leading to detail loss and ground point interference.
We propose a multi-branch two-stage 3D object detection framework using a Semantic-aware Multi-branch Sampling (SMS) module and multi-view constraints.
arXiv Detail & Related papers (2024-07-08T09:25:45Z) - PoIFusion: Multi-Modal 3D Object Detection via Fusion at Points of Interest [65.48057241587398]
PoIFusion is a framework to fuse information of RGB images and LiDAR point clouds at the points of interest (PoIs)
Our approach maintains the view of each modality and obtains multi-modal features by computation-friendly projection and computation.
We conducted extensive experiments on nuScenes and Argoverse2 datasets to evaluate our approach.
arXiv Detail & Related papers (2024-03-14T09:28:12Z) - Towards Unified 3D Object Detection via Algorithm and Data Unification [70.27631528933482]
We build the first unified multi-modal 3D object detection benchmark MM- Omni3D and extend the aforementioned monocular detector to its multi-modal version.
We name the designed monocular and multi-modal detectors as UniMODE and MM-UniMODE, respectively.
arXiv Detail & Related papers (2024-02-28T18:59:31Z) - Multimodal Transformer Using Cross-Channel attention for Object Detection in Remote Sensing Images [1.662438436885552]
Multi-modal fusion has been determined to enhance the accuracy by fusing data from multiple modalities.
We propose a novel multi-modal fusion strategy for mapping relationships between different channels at the early stage.
By addressing fusion in the early stage, as opposed to mid or late-stage methods, our method achieves competitive and even superior performance compared to existing techniques.
arXiv Detail & Related papers (2023-10-21T00:56:11Z) - Multi-Modal 3D Object Detection by Box Matching [109.43430123791684]
We propose a novel Fusion network by Box Matching (FBMNet) for multi-modal 3D detection.
With the learned assignments between 3D and 2D object proposals, the fusion for detection can be effectively performed by combing their ROI features.
arXiv Detail & Related papers (2023-05-12T18:08:51Z) - FFPA-Net: Efficient Feature Fusion with Projection Awareness for 3D
Object Detection [19.419030878019974]
unstructured 3D point clouds are filled in the 2D plane and 3D point cloud features are extracted faster using projection-aware convolution layers.
The corresponding indexes between different sensor signals are established in advance in the data preprocessing.
Two new plug-and-play fusion modules, LiCamFuse and BiLiCamFuse, are proposed.
arXiv Detail & Related papers (2022-09-15T16:13:19Z) - Bridging the View Disparity of Radar and Camera Features for Multi-modal
Fusion 3D Object Detection [6.959556180268547]
This paper focuses on how to utilize millimeter-wave (MMW) radar and camera sensor fusion for 3D object detection.
A novel method which realizes the feature-level fusion under bird-eye view (BEV) for a better feature representation is proposed.
arXiv Detail & Related papers (2022-08-25T13:21:37Z) - Boosting 3D Object Detection by Simulating Multimodality on Point Clouds [51.87740119160152]
This paper presents a new approach to boost a single-modality (LiDAR) 3D object detector by teaching it to simulate features and responses that follow a multi-modality (LiDAR-image) detector.
The approach needs LiDAR-image data only when training the single-modality detector, and once well-trained, it only needs LiDAR data at inference.
Experimental results on the nuScenes dataset show that our approach outperforms all SOTA LiDAR-only 3D detectors.
arXiv Detail & Related papers (2022-06-30T01:44:30Z) - Know Your Surroundings: Panoramic Multi-Object Tracking by Multimodality
Collaboration [56.01625477187448]
We propose a MultiModality PAnoramic multi-object Tracking framework (MMPAT)
It takes both 2D panorama images and 3D point clouds as input and then infers target trajectories using the multimodality data.
We evaluate the proposed method on the JRDB dataset, where the MMPAT achieves the top performance in both the detection and tracking tasks.
arXiv Detail & Related papers (2021-05-31T03:16:38Z) - Multimodal Object Detection via Bayesian Fusion [59.31437166291557]
We study multimodal object detection with RGB and thermal cameras, since the latter can provide much stronger object signatures under poor illumination.
Our key contribution is a non-learned late-fusion method that fuses together bounding box detections from different modalities.
We apply our approach to benchmarks containing both aligned (KAIST) and unaligned (FLIR) multimodal sensor data.
arXiv Detail & Related papers (2021-04-07T04:03:20Z) - Multi-View Adaptive Fusion Network for 3D Object Detection [14.506796247331584]
3D object detection based on LiDAR-camera fusion is becoming an emerging research theme for autonomous driving.
We propose a single-stage multi-view fusion framework that takes LiDAR bird's-eye view, LiDAR range view and camera view images as inputs for 3D object detection.
We design an end-to-end learnable network named MVAF-Net to integrate these two components.
arXiv Detail & Related papers (2020-11-02T00:06:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.