論文の概要: Optimistically Tempered Online Learning
- arxiv url: http://arxiv.org/abs/2301.07530v2
- Date: Wed, 14 Feb 2024 15:16:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-15 20:40:13.458821
- Title: Optimistically Tempered Online Learning
- Title(参考訳): 最適化されたオンライン学習
- Authors: Maxime Haddouche and Olivier Wintenberger and Benjamin Guedj
- Abstract要約: 最適化オンライン学習アルゴリズムは、楽観的に常に有用であると仮定された専門家のアドバイスを利用する。
我々は,オンライン学習フレームワークと,オンラインアルゴリズムのOT適応を開発する。
我々のアルゴリズムは、動的後悔境界という形で、音理論上の保証を伴っている。
- 参考スコア(独自算出の注目度): 19.12634663761194
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Optimistic Online Learning algorithms have been developed to exploit expert
advices, assumed optimistically to be always useful. However, it is legitimate
to question the relevance of such advices \emph{w.r.t.} the learning
information provided by gradient-based online algorithms. In this work, we
challenge the confidence assumption on the expert and develop the
\emph{optimistically tempered} (OT) online learning framework as well as OT
adaptations of online algorithms. Our algorithms come with sound theoretical
guarantees in the form of dynamic regret bounds, and we eventually provide
experimental validation of the usefulness of the OT approach.
- Abstract(参考訳): 専門家のアドバイスを活用するために最適化オンライン学習アルゴリズムが開発された。
しかし、グラデーションベースのオンラインアルゴリズムによって提供される学習情報に対して、そのようなアドバイスの妥当性を疑うのは妥当である。
本研究では,専門家に対する信頼感の仮定に挑戦し,オンラインアルゴリズムのot適応と同様に,オンライン学習フレームワーク \emph{optimistically tempered} (ot)を開発した。
我々のアルゴリズムは動的後悔境界という形で健全な理論的保証を伴い、最終的にはotアプローチの有用性を実験的に検証する。
関連論文リスト
- Online inductive learning from answer sets for efficient reinforcement learning exploration [52.03682298194168]
エージェントポリシーの近似を説明可能な近似を表す論理規則の集合を学習するために,帰納的な解集合プログラムの学習を利用する。
次に、学習ルールに基づいて回答セット推論を行い、次のバッチで学習エージェントの探索をガイドします。
本手法は,初回トレーニングにおいても,エージェントが達成した割引リターンを著しく向上させる。
論文 参考訳(メタデータ) (2025-01-13T16:13:22Z) - Learning-Augmented Algorithms for Online Concave Packing and Convex Covering Problems [4.9826534303287335]
本稿では,2つの基本的な最適化設定のための学習強化アルゴリズムフレームワークを提案する。
コンケーブ目的のオンラインパッキングでは、アドバイスと最先端のオンラインアルゴリズムを切り替える、単純だが包括的な戦略を提示します。
我々のアルゴリズムは、アドバイスが正確であるとき、そしてアドバイスが間違っていても、最先端の古典的オンラインアルゴリズムと同等のパフォーマンスを維持しながら、不可能な結果を破ることを示した。
論文 参考訳(メタデータ) (2024-11-13T04:27:25Z) - Gradient-Variation Online Learning under Generalized Smoothness [56.38427425920781]
勾配変分オンライン学習は、オンライン関数の勾配の変化とともにスケールする後悔の保証を達成することを目的としている。
ニューラルネットワーク最適化における最近の取り組みは、一般化された滑らかさ条件を示唆し、滑らかさは勾配ノルムと相関する。
ゲームにおける高速収束と拡張逆最適化への応用について述べる。
論文 参考訳(メタデータ) (2024-08-17T02:22:08Z) - A Simple Learning-Augmented Algorithm for Online Packing with Concave Objectives [4.9826534303287335]
本稿では,線形制約付きオンラインパッキング問題に対する単純な学習拡張アルゴリズムの導入と解析を行う。
さらに、このような単純なブラックボックス解が最適である場合に必要かつ十分な条件を理解するという問題を提起する。
論文 参考訳(メタデータ) (2024-06-05T18:39:28Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
我々は,対話型模倣学習と類似するが,さらに実践的な仮定の下で,非政治強化学習によってパフォーマンスが向上できることを実証する。
提案手法は,ユーザ介入信号を用いた強化学習を報奨として利用する。
このことは、インタラクティブな模倣学習において介入する専門家がほぼ最適であるべきだという仮定を緩和し、アルゴリズムが潜在的に最適でない人間の専門家よりも改善される行動を学ぶことを可能にする。
論文 参考訳(メタデータ) (2023-11-21T21:05:21Z) - Efficient Methods for Non-stationary Online Learning [61.63338724659592]
本稿では, 動的後悔と適応的後悔を最適化する効率的な手法を提案し, ラウンド当たりの投影回数を$mathcalO(log T)$から$ $1$まで削減した。
また、さらに強化された測度、すなわち「インターバル・ダイナミック・リピート」を研究し、ラウンド当たりの射影数を$mathcalO(log2 T)$から$$$$に減らした。
論文 参考訳(メタデータ) (2023-09-16T07:30:12Z) - Online Attentive Kernel-Based Temporal Difference Learning [13.94346725929798]
オンライン強化学習(RL)はその高速学習能力とデータ効率の向上により注目されている。
オンラインRLは、しばしば複雑な値関数近似(VFA)と破滅的な干渉に悩まされる。
2時間スケール最適化を用いたオンラインカーネルに基づく時間差分法(OAKTD)を提案する。
論文 参考訳(メタデータ) (2022-01-22T14:47:10Z) - Boosting for Online Convex Optimization [64.15578413206715]
多数の専門家とオンライン凸最適化の意思決定フレームワークを検討します。
弱学習アルゴリズムは、基本クラスの専門家に対するおよその後悔を保証するメカニズムとして定義します。
ベースクラスの凸船体に対するほぼ最適の後悔を保証する効率的なブースティングアルゴリズムを提供します。
論文 参考訳(メタデータ) (2021-02-18T12:30:49Z) - Meta-Gradient Reinforcement Learning with an Objective Discovered Online [54.15180335046361]
本稿では,深層ニューラルネットワークによって柔軟にパラメータ化される,自己目的のメタ段階的降下に基づくアルゴリズムを提案する。
目的はオンラインで発見されるため、時間とともに変化に適応することができる。
Atari Learning Environmentでは、メタグラディエントアルゴリズムが時間とともに適応して、より効率よく学習する。
論文 参考訳(メタデータ) (2020-07-16T16:17:09Z) - A Modern Introduction to Online Learning [15.974402990630402]
オンライン学習(オンライン学習)とは、最悪の場合における後悔の最小化の枠組みを指す。
凸損失を伴うオンライン学習のための一階と二階のアルゴリズムを提示する。
論文 参考訳(メタデータ) (2019-12-31T08:16:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。