Towards Improved Quantum Simulations and Sensing with Trapped 2D Ion
Crystals via Parametric Amplification
- URL: http://arxiv.org/abs/2301.08195v3
- Date: Wed, 29 Mar 2023 18:09:41 GMT
- Title: Towards Improved Quantum Simulations and Sensing with Trapped 2D Ion
Crystals via Parametric Amplification
- Authors: Matt Affolter, Wenchao Ge, Bryce Bullock, Shaun C. Burd, Kevin A.
Gilmore, Jennifer F. Lilieholm, Allison L. Carter, John J. Bollinger
- Abstract summary: Improving coherence is a fundamental challenge in quantum simulation and sensing experiments with trapped ions.
Here we discuss, experimentally demonstrate, and estimate the potential impacts of two different protocols.
The experiments are performed on 2D crystal arrays of approximately one hundred $9$Be$+$ ions confined in a Penning trap.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Improving coherence is a fundamental challenge in quantum simulation and
sensing experiments with trapped ions. Here we discuss, experimentally
demonstrate, and estimate the potential impacts of two different protocols that
enhance, through motional parametric excitation, the coherent spin-motion
coupling of ions obtained with a spin-dependent force. The experiments are
performed on 2D crystal arrays of approximately one hundred $^9$Be$^+$ ions
confined in a Penning trap. By modulating the trapping potential at close to
twice the center-of-mass mode frequency, we squeeze the motional mode and
enhance the spin-motion coupling while maintaining spin coherence. With a
stroboscopic protocol, we measure $5.4 \pm 0.9$ dB of motional squeezing below
the ground-state motion, from which theory predicts a $10$ dB enhancement in
the sensitivity for measuring small displacements using a recently demonstrated
protocol [Science $\textbf{373}$, 673 (2021)]. With a continuous squeezing
protocol, we measure and accurately calibrate the parametric coupling strength.
Theory suggests this protocol can be used to improve quantum spin squeezing,
limited in our system by off-resonant light scatter. We illustrate numerically
the trade-offs between strong parametric amplification and motional dephasing
in the form of center-of-mass frequency fluctuations for improving quantum spin
squeezing in our set-up.
Related papers
- Joint estimation of a two-phase spin rotation beyond classical limit [11.887327647811661]
In diverse application scenarios, the estimation of more than one single parameter is often required.
We report quantum-enhanced measurement of simultaneous spin rotations around two axes, making use of spin-nematic squeezing in an atomic Bose-Einstein condensate.
arXiv Detail & Related papers (2023-12-16T15:21:00Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Scalable spin squeezing in a dipolar Rydberg atom array [2.392520546501394]
We show how to enhance the precision of measurements beyond the standard quantum limit.
To do so, one can reshape the quantum projection noise -- a strategy known as squeezing.
We present two independent refinements: first, using a multistep spin-squeezing protocol allows us to further enhance the squeezing by approximately 1 dB, and second, leveraging Floquet engineering to realize Heisenberg interactions.
arXiv Detail & Related papers (2023-03-14T16:35:17Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Spin squeezing enhanced dual species atom interferometric accelerometer
employing large momentum transfer for precision test of the equivalence
principle [0.38952193472050206]
We show that spin squeezing can be used to enhance the sensitivity of accelerometry close to the Heisenberg limit.
For a space borne platform in low earth orbit, such a scheme may enable the measurement of the E"otv"os parameter with a sensitivity of the order of 10(-20)
arXiv Detail & Related papers (2022-09-14T10:52:16Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Engineering spin-spin interactions with optical tweezers in trapped ions [0.0]
We consider the use of optical tweezers to engineer the sound-wave spectrum of trapped ion crystals.
We show that this approach allows us to tune the interactions and connectivity of the ion qubits beyond the power-law interactions.
arXiv Detail & Related papers (2021-03-18T17:58:00Z) - Quantum-enhanced sensing of displacements and electric fields with large
trapped-ion crystals [0.0]
We realize a many-body quantum-enhanced sensor to detect weak displacements and electric fields using a large crystal of $sim 150$ trapped ions.
We report quantum enhanced sensitivity to displacements of $8.8 pm 0.4$dB below the standard quantum limit and a sensitivity for measuring electric fields of $240pm10mathrmnVmathrmm-1$ in $1$ second.
arXiv Detail & Related papers (2021-03-15T20:20:57Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.