Cascaded Multiparameter Quantum Metrology
- URL: http://arxiv.org/abs/2304.08545v3
- Date: Fri, 17 Jan 2025 22:21:02 GMT
- Title: Cascaded Multiparameter Quantum Metrology
- Authors: Gregory Krueper, Lior Cohen, Juliet T. Gopinath,
- Abstract summary: We show that squeezing can give a quantum enhancement in sensitivity over that of classical states by a factor of $e2r$, where $r approx 1$ is the squeezing parameter.<n>We have modeled an interferometer that senses multiple phase shifts along the same path, demonstrating a maximal quantum advantage by combining a coherent state with squeezed vacuum.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an innovative, platform-independent concept for multiparameter sensing where the measurable parameters are in series, or cascaded, enabling measurements as a function of position. With temporally resolved detection, we show that squeezing can give a quantum enhancement in sensitivity over that of classical states by a factor of $e^{2r}$, where $r \approx 1$ is the squeezing parameter. As an example, we have modeled an interferometer that senses multiple phase shifts along the same path, demonstrating a maximal quantum advantage by combining a coherent state with squeezed vacuum. Further classical modeling with up to 100 phases shows linear scaling potential for adding nodes to the sensor. The approach represents a new paradigm in multiparameter quantum metrology, and can be applied to remote sensing, geophysical surveying, and infrastructure monitoring.
Related papers
- Phase transitions, symmetries, and tunneling in Kerr parametric oscillators [37.69303106863453]
We study the onset of ground-state and excited-state quantum phase transitions in KPOs.
We identify the critical points associated with quantum phase transitions and analyze their influence on the energy spectrum and tunneling dynamics.
Our findings provide insights into the engineering of robust quantum states, quantum dynamics control, and onset of quantum phase transitions with implications for critical quantum sensing.
arXiv Detail & Related papers (2025-04-21T18:00:19Z) - Multiparameter estimation with an array of entangled atomic sensors [1.9909997482325166]
entangled state of many-particle systems are investigated to enhance measurement precision of the most precise clocks and field sensors.
By splitting a spin-squeezed ensemble, we create an atomic sensor array featuring inter-sensor entanglement that can be flexibly configured to enhance measurement precision of multiple parameters jointly.
arXiv Detail & Related papers (2025-04-11T16:32:29Z) - Unveiling quantum phase transitions from traps in variational quantum algorithms [0.0]
We introduce a hybrid algorithm that combines quantum optimization with classical machine learning.
We use LASSO for identifying conventional phase transitions and the Transformer model for topological transitions.
Our protocol significantly enhances efficiency and precision, opening new avenues in the integration of quantum computing and machine learning.
arXiv Detail & Related papers (2024-05-14T09:01:41Z) - Quantum multiparameter estimation enhanced by a topological phase
transition [3.188072216541844]
In a quantum dynamics system, multiple to-be-estimated parameters are encoded by a unitary evolution.
As the parameters vary, the system may undergo a topological phase transition (TPT)
We propose the singular behavior of the quantum metric tensor around the TPT point as a tool for the simultaneous optimal estimation of multiple parameters.
arXiv Detail & Related papers (2024-02-11T02:52:39Z) - Modular Many-Body Quantum Sensors [0.0]
We develop a modular approach for introducing multiple phase transitions in a many-body system.
This naturally allows us to enlarge the region of quantum-enhanced precision by encompassing the newly created phase boundaries.
In symmetry-breaking sensors, we show that the newly created critical points inherit the original class and a simple total magnetization measurement already suffices to locate them.
In topological sensors, our modular construction creates multiple bands which leads to a rich phase diagram.
arXiv Detail & Related papers (2023-11-30T07:42:29Z) - Message-Passing Neural Quantum States for the Homogeneous Electron Gas [41.94295877935867]
We introduce a message-passing-neural-network-based wave function Ansatz to simulate extended, strongly interacting fermions in continuous space.
We demonstrate its accuracy by simulating the ground state of the homogeneous electron gas in three spatial dimensions.
arXiv Detail & Related papers (2023-05-12T04:12:04Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Exploring the phase structure of the multi-flavor Schwinger model with
quantum computing [0.0]
A variational quantum eigensolver is proposed to explore the phase structure of the multi-flavor Schwinger model.
We numerically demonstrate that our ansatz circuit is able to capture the phase structure of the model and allows for faithfully approximating the ground state.
Our results show that our approach is suitable for current intermediate-scale quantum hardware and can be readily implemented on existing quantum devices.
arXiv Detail & Related papers (2022-11-23T15:16:41Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - A new concept for design of photonic integrated circuits with the
ultimate density and low loss [62.997667081978825]
We propose a new concept for design of PICs with the ultimate downscaling capability, the absence of geometric loss and a high-fidelity throughput.
This is achieved by a periodic continuous-time quantum walk of photons through waveguide arrays.
We demonstrate the potential of the new concept by reconsidering the design of basic building blocks of the information and sensing systems.
arXiv Detail & Related papers (2021-08-02T14:23:18Z) - Probing the topological Anderson transition with quantum walks [48.7576911714538]
We consider one-dimensional quantum walks in optical linear networks with synthetically introduced disorder and tunable system parameters.
The option to directly monitor the walker's probability distribution makes this optical platform ideally suited for the experimental observation of the unique signatures of the one-dimensional topological Anderson transition.
arXiv Detail & Related papers (2021-02-01T21:19:15Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z) - Lattice gauge theory and dynamical quantum phase transitions using noisy
intermediate scale quantum devices [0.0]
We study the dynamics of a (1+1)D U(1) quantum link model following quenches of its mass-term.
We find that the system undergoes dynamical quantum phase transitions for all system sizes considered.
We propose a class of superconducting circuits for the general implementation of U(1) quantum link models.
arXiv Detail & Related papers (2020-08-20T14:07:23Z) - Optimal non-classical correlations of light with a levitated nano-sphere [34.82692226532414]
Nonclassical correlations provide a resource for many applications in quantum technology.
Optomechanical systems can generate nonclassical correlations between the mechanical mode and a mode of travelling light.
We propose automated optimization of the production of quantum correlations in such a system.
arXiv Detail & Related papers (2020-06-26T15:27:47Z) - Entanglement Enhanced Estimation of a Parameter Embedded in Multiple
Phases [1.0828616610785522]
Quantum-enhanced sensing promises to improve the performance of sensing tasks using non-classical probes and measurements.
We propose a distributed distributed sensing framework that uses an entangled quantum probe to estimate a scene- parameter encoded within an array of phases.
We apply our framework to examples as diverse as radio-frequency phased-array directional radar, beam-displacement tracking for atomic-force microscopy, and fiber-based temperature gradiometry.
arXiv Detail & Related papers (2020-04-08T17:59:33Z) - Photonic Quantum Metrology [0.0]
The aim of this research field is the estimation of unknown parameters exploiting quantum resources.
We focus on the application of photonic technology for this task, with particular attention to phase estimation.
arXiv Detail & Related papers (2020-03-12T14:37:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.