Mixed-State Entanglement Measures in Topological Order
- URL: http://arxiv.org/abs/2301.08207v2
- Date: Sat, 29 Jul 2023 17:49:11 GMT
- Title: Mixed-State Entanglement Measures in Topological Order
- Authors: Chao Yin, Shang Liu
- Abstract summary: We study the entanglement in topologically ordered states between two arbitrary spatial regions.
While the field-theoretic results are expected to be topological and universal, the lattice results contain nontopological/nonuniversal terms as well.
- Score: 0.685316573653194
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum entanglement is a particularly useful characterization of topological
orders which lack conventional order parameters. In this work, we study the
entanglement in topologically ordered states between two arbitrary spatial
regions, using two distinct mixed-state entanglement measures: the so-called
"computable cross-norm or realignment" (CCNR) negativity, and the more
well-known partial-transpose (PT) negativity. We first generally compute the
entanglement measures: We obtain general expressions both in (2+1)D
Chern-Simons field theories under certain simplifying conditions, and in the
Pauli stabilizer formalism that applies to lattice models in all dimensions.
While the field-theoretic results are expected to be topological and universal,
the lattice results contain nontopological/nonuniversal terms as well. This
raises the important problem of continuum-lattice comparison which is crucial
for practical applications. When the two spatial regions and the remaining
subsystem do not have triple intersection, we solve the problem by proposing a
general strategy for extracting the topological and universal terms in both
entanglement measures. Examples in the (2+1)D $Z_2$ toric code model are also
presented. In the presence of trisection points, however, our result suggests
that the subleading piece in the PT negativity is not topological and depends
on the local geometry of the trisections, which is in harmonics with a
technical subtlety in the field-theoretic calculation.
Related papers
- Relative Representations: Topological and Geometric Perspectives [53.88896255693922]
Relative representations are an established approach to zero-shot model stitching.
We introduce a normalization procedure in the relative transformation, resulting in invariance to non-isotropic rescalings and permutations.
Second, we propose to deploy topological densification when fine-tuning relative representations, a topological regularization loss encouraging clustering within classes.
arXiv Detail & Related papers (2024-09-17T08:09:22Z) - Towards a classification of mixed-state topological orders in two dimensions [4.380380626083065]
We take a step toward classifying mixed-state topological orders in two spatial dimensions.
We establish mixed-state topological orders that are intrinsically mixed, i.e., that have no ground state counterpart.
We conjecture that mixed-state topological orders are classified by premodular anyon theories.
arXiv Detail & Related papers (2024-05-03T18:00:00Z) - A Noisy Approach to Intrinsically Mixed-State Topological Order [0.0]
We show that the resulting mixed-state can display intrinsically mixed-state topological order (imTO)
We find that gauging out anyons generically results in imTO, with the decohered mixed-state strongly symmetric under certain anomalous 1-form symmetries.
arXiv Detail & Related papers (2024-03-20T18:00:01Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - A holographic view of topological stabilizer codes [0.6290982779160698]
We provide an explicit and general framework for understanding the bulk-boundary correspondence in Pauli topological stabilizer codes.
We show that the boundary Hilbert space cannot be realized via local degrees of freedom.
We show how linear and fractal subsystem symmetries naturally arise at the boundaries of fracton phases.
arXiv Detail & Related papers (2023-12-07T19:00:00Z) - Multipartite entanglement in two-dimensional chiral topological liquids [8.713843977199108]
We use the bulk-boundary correspondence to calculate tripartite entanglement in 2d topological phases.
We generalize this to the $p$-vertex state, general rational conformal field theories, and more choices of subsystems.
arXiv Detail & Related papers (2023-01-17T19:00:26Z) - From locality to irregularity: Introducing local quenches in massive
scalar field theory [68.8204255655161]
We consider the dynamics of excited local states in massive scalar field theory in an arbitrary spacetime dimension.
We identify different regimes of their evolution depending on the values of the field mass and the quench regularization parameter.
We also investigate the local quenches in massive scalar field theory on a cylinder and show that they cause an erratic and chaotic-like evolution of observables.
arXiv Detail & Related papers (2022-05-24T18:00:07Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Multipartitioning topological phases by vertex states and quantum
entanglement [9.519248546806903]
We discuss multipartitions of the gapped ground states of (2+1)-dimensional topological liquids into three spatial regions.
We compute various correlation measures, such as entanglement negativity, reflected entropy, and associated spectra.
As specific examples, we consider topological chiral $p$-wave superconductors and Chern insulators.
arXiv Detail & Related papers (2021-10-22T18:01:24Z) - Entanglement and Complexity of Purification in (1+1)-dimensional free
Conformal Field Theories [55.53519491066413]
We find pure states in an enlarged Hilbert space that encode the mixed state of a quantum field theory as a partial trace.
We analyze these quantities for two intervals in the vacuum of free bosonic and Ising conformal field theories.
arXiv Detail & Related papers (2020-09-24T18:00:13Z) - Radiative topological biphoton states in modulated qubit arrays [105.54048699217668]
We study topological properties of bound pairs of photons in spatially-modulated qubit arrays coupled to a waveguide.
For open boundary condition, we find exotic topological bound-pair edge states with radiative losses.
By joining two structures with different spatial modulations, we find long-lived interface states which may have applications in storage and quantum information processing.
arXiv Detail & Related papers (2020-02-24T04:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.