論文の概要: Explainable Multilayer Graph Neural Network for Cancer Gene Prediction
- arxiv url: http://arxiv.org/abs/2301.08831v2
- Date: Wed, 3 May 2023 12:28:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-04 18:03:32.918437
- Title: Explainable Multilayer Graph Neural Network for Cancer Gene Prediction
- Title(参考訳): 癌遺伝子予測のための説明可能な多層グラフニューラルネットワーク
- Authors: Michail Chatzianastasis, Michalis Vazirgiannis, Zijun Zhang
- Abstract要約: 本稿では,癌遺伝子の同定にEMGNN(Explainable Multilayer Graph Neural Network)アプローチを提案する。
単一の生物学的ネットワーク上の従来のグラフ学習とは異なり、EMGNNは多層グラフニューラルネットワークを使用して、複数の生物学的ネットワークから正確ながん遺伝子予測を学習する。
提案手法は, 従来手法よりも平均7.15%, 精度・リコール曲線 (AUPR) で改善されている。
- 参考スコア(独自算出の注目度): 21.83218536069088
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The identification of cancer genes is a critical yet challenging problem in
cancer genomics research. Existing computational methods, including deep graph
neural networks, fail to exploit the multilayered gene-gene interactions or
provide limited explanation for their predictions. These methods are restricted
to a single biological network, which cannot capture the full complexity of
tumorigenesis. Models trained on different biological networks often yield
different and even opposite cancer gene predictions, hindering their
trustworthy adaptation. Here, we introduce an Explainable Multilayer Graph
Neural Network (EMGNN) approach to identify cancer genes by leveraging multiple
genegene interaction networks and pan-cancer multi-omics data. Unlike
conventional graph learning on a single biological network, EMGNN uses a
multilayered graph neural network to learn from multiple biological networks
for accurate cancer gene prediction. Our method consistently outperforms all
existing methods, with an average 7.15% improvement in area under the
precision-recall curve (AUPR) over the current state-of-the-art method.
Importantly, EMGNN integrated multiple graphs to prioritize newly predicted
cancer genes with conflicting predictions from single biological networks. For
each prediction, EMGNN provided valuable biological insights via both
model-level feature importance explanations and molecular-level gene set
enrichment analysis. Overall, EMGNN offers a powerful new paradigm of graph
learning through modeling the multilayered topological gene relationships and
provides a valuable tool for cancer genomics research.
- Abstract(参考訳): がん遺伝子の同定は、がんゲノム研究において決定的かつ困難な問題である。
ディープグラフニューラルネットワークを含む既存の計算手法では、多層遺伝子間相互作用を利用したり、予測の限定的な説明をしなかった。
これらの方法は単一の生物学的ネットワークに制限されており、腫瘍遺伝の完全な複雑さを捉えることはできない。
異なる生物学的ネットワークで訓練されたモデルは、しばしば異なる癌遺伝子予測を生じさせ、信頼に値する適応を妨げる。
本稿では,複数の遺伝子間相互作用ネットワークとパン・カンサーマルチオミクスデータを活用することで,癌遺伝子を同定するための説明可能な多層グラフニューラルネットワーク(EMGNN)を提案する。
単一の生物学的ネットワーク上の従来のグラフ学習とは異なり、EMGNNは多層グラフニューラルネットワークを使用して、複数の生物学的ネットワークから正確ながん遺伝子予測を学習する。
本手法は,既存の手法を平均7.15%改善し,現行手法よりも精度recall curve (aupr) が向上した。
重要なことに、EMGNNは複数のグラフを統合し、単一の生物学的ネットワークからの予測に矛盾する新しい予測された癌遺伝子を優先順位付けした。
それぞれの予測のために、EMGNNはモデルレベルの特徴重要度説明と分子レベルの遺伝子セット富化分析の両方を通して貴重な生物学的洞察を提供した。
全体として、EMGNNは多層トポロジカル遺伝子関係をモデル化することでグラフ学習の強力なパラダイムを提供し、がんゲノム研究に有用なツールを提供する。
関連論文リスト
- Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
遺伝子変異予測性能を向上させるため,生物知識を付加したPathGenomic Multi-label Transformerを開発した。
BPGTはまず、2つの慎重に設計されたモジュールによって遺伝子前駆体を構成する新しい遺伝子エンコーダを確立する。
BPGTはその後ラベルデコーダを設計し、最終的に2つの調整されたモジュールによる遺伝的突然変異予測を行う。
論文 参考訳(メタデータ) (2024-06-05T06:42:27Z) - Pathology-genomic fusion via biologically informed cross-modality graph learning for survival analysis [7.996257103473235]
そこで我々は,全スライド画像(WSI)とバルクRNA-Seq発現データと異種グラフニューラルネットワークを統合したPGHG(Pathology-Genome Heterogeneous Graph)を提案する。
PGHGは生物学的知識誘導表現学習ネットワークと病理ゲノム不均一グラフから構成される。
腫瘍ゲノムアトラスの低悪性度グリオーマ,グリオーマ,腎乳頭状細胞癌データセットについて検討した。
論文 参考訳(メタデータ) (2024-04-11T09:07:40Z) - IGCN: Integrative Graph Convolution Networks for patient level insights and biomarker discovery in multi-omics integration [2.0971479389679337]
本稿では,癌分子サブタイプとバイオメディカル分類のための新しい統合ニューラルネットワークアプローチを提案する。
IGCNは、特定のクラスを予測するために患者に対してどのタイプのオミクスがより強調されるかを特定することができる。
IGCNは、様々なオミクスデータタイプから重要なバイオマーカーを特定できる。
論文 参考訳(メタデータ) (2024-01-31T05:52:11Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
カナダでは、前立腺がんは男性でもっとも一般的ながんであり、2022年のこの人口統計では、新しいがん症例の20%を占めている。
拡散強調画像(DWI)データを用いた前立腺癌診断,予後,治療計画のためのディープニューラルネットワークの開発には大きな関心が寄せられている。
本研究では,解剖学的条件制御型潜伏拡散戦略の導入により,現実的な前立腺DWIデータを生成するための潜伏拡散の有効性について検討した。
論文 参考訳(メタデータ) (2023-11-30T15:11:03Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
がんは心臓血管疾患の2番目の死因である。
遺伝子発現は癌の早期発見において基本的な役割を担っている。
本研究は,機械学習を用いた癌分類における遺伝子発現解析の最近の進歩を概説する。
論文 参考訳(メタデータ) (2023-01-28T15:03:03Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
不均一グラフニューラルネットワーク(HGNN)は、不均一グラフの豊富な構造的および意味的な情報をノード表現に埋め込む強力な能力を持つ。
既存のHGNNは、同種グラフ上のグラフニューラルネットワーク(GNN)から多くのメカニズム、特に注意機構と多層構造を継承する。
本稿では,これらのメカニズムを詳細に検討し,簡便かつ効率的なヘテロジニアスグラフニューラルネットワーク(SeHGNN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T10:01:46Z) - Multi-modal learning for predicting the genotype of glioma [14.93152817415408]
Isocitrate dehydrogenase (IDH)遺伝子変異はグリオーマの診断と予後に必須なバイオマーカーである。
焦点腫瘍像と幾何学的特徴をMRIから派生した脳ネットワーク特徴と統合することにより、グリオーマ遺伝子型をより正確に予測できることが期待されている。
本稿では,3つのエンコーダを用いたマルチモーダル学習フレームワークを提案し,局所腫瘍像,腫瘍幾何学,大域脳ネットワークの特徴を抽出する。
論文 参考訳(メタデータ) (2022-03-21T10:20:04Z) - Collaborative learning of images and geometrics for predicting
isocitrate dehydrogenase status of glioma [8.262398325144774]
IDH変異検出のゴールド標準は、侵襲的なアプローチによって得られた腫瘍組織を必要とし、通常は高価である。
近年の放射線ゲノミクスの進歩は、MRIに基づくIDH変異を予測する非侵襲的アプローチを提供する。
本稿では、畳み込みニューラルネットワーク(CNN)とグラフニューラルネットワーク(GNN)を用いて、腫瘍画像と腫瘍幾何学の両方を学習する協調学習フレームワークを提案する。
その結果,提案モデルは3D-DenseNet121のベースラインモデルよりも優れていた。
論文 参考訳(メタデータ) (2022-01-14T15:58:07Z) - VEGN: Variant Effect Prediction with Graph Neural Networks [19.59965282985234]
本稿では,遺伝子と変異を持つ異種グラフ上で動作するグラフニューラルネットワーク(GNN)を用いて,変異効果予測をモデル化したVEGNを提案する。
このグラフは、変異体を遺伝子に割り当て、遺伝子-遺伝子相互作用ネットワークに遺伝子を接続することによって作成される。
VeGNは既存の最先端モデルの性能を改善する。
論文 参考訳(メタデータ) (2021-06-25T13:51:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。