論文の概要: A Time Series Approach to Parkinson's Disease Classification from EEG
- arxiv url: http://arxiv.org/abs/2301.09568v1
- Date: Fri, 20 Jan 2023 16:11:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-24 12:59:22.502432
- Title: A Time Series Approach to Parkinson's Disease Classification from EEG
- Title(参考訳): eegからのパーキンソン病分類への時系列的アプローチ
- Authors: Amarpal Sahota, Amber Roguski, Matthew W. Jones, Michal Rolinski, Alan
Whone, Raul Santos-Rodriguez, Zahraa S. Abdallah
- Abstract要約: 本稿では,時系列分類手法の活用を可能にする新しいEEGデータ表現を提案する。
また、分類のための高重要データ型と脳領域を識別するフレームワークを提案する。
我々の枠組みを用いて、パーキンソン病の存在を予測できる最も予測力を持つ前頭前頭前野である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Firstly, we present a novel representation for EEG data, a 7-variate series
of band power coefficients, which enables the use of (previously inaccessible)
time series classification methods. Specifically, we implement the
multi-resolution representation-based time series classification method MrSQL.
This is deployed on a challenging early-stage Parkinson's dataset that includes
wakeful and sleep EEG. Initial results are promising with over 90% accuracy
achieved on all EEG data types used. Secondly, we present a framework that
enables high-importance data types and brain regions for classification to be
identified. Using our framework, we find that, across different EEG data types,
it is the Prefrontal brain region that has the most predictive power for the
presence of Parkinson's Disease. This outperformance was statistically
significant versus ten of the twelve other brain regions (not significant
versus adjacent Left Frontal and Right Frontal regions). The Prefrontal region
of the brain is important for higher-order cognitive processes and our results
align with studies that have shown neural dysfunction in the prefrontal cortex
in Parkinson's Disease.
- Abstract(参考訳): まず,帯域パワー係数の7変量列である脳波データに対する新しい表現法を提案する。
具体的には,マルチ解像度表現に基づく時系列分類手法MrSQLを実装した。
これは、ウェイクフルとスリープEEGを含むアーリーステージのParkinsonのデータセットにデプロイされる。
初期の結果は、使用するすべてのEEGデータタイプに対して90%以上の精度で達成されている。
第2に、分類のための高重要性データ型と脳領域を識別するフレームワークを提案する。
私たちのフレームワークを使って、さまざまな脳波データタイプにわたって、パーキンソン病の存在を最も予測する能力を持つ前頭前脳領域であることが分かりました。
このアウトパフォーマンスは、他の12の脳領域(隣り合う左前頭葉と右前頭葉)のうち10と統計的に有意であった。
脳の前頭前野領域は高次認知過程において重要であり,本研究はパーキンソン病の前頭前野の神経機能障害を呈する研究と一致している。
関連論文リスト
- Integrative Deep Learning Framework for Parkinson's Disease Early Detection using Gait Cycle Data Measured by Wearable Sensors: A CNN-GRU-GNN Approach [0.3222802562733786]
対象のバイナリ分類に適した,先駆的な深層学習アーキテクチャを提案する。
我々のモデルは、1D畳み込みニューラルネットワーク(CNN)、GRU(Gated Recurrent Units)、GNN(Graph Neural Network)のパワーを利用する。
提案モデルでは, 99.51%, 99.57%, 99.71%, 99.64%のスコアが得られた。
論文 参考訳(メタデータ) (2024-04-09T15:19:13Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - How Does Pruning Impact Long-Tailed Multi-Label Medical Image
Classifiers? [49.35105290167996]
プルーニングは、ディープニューラルネットワークを圧縮し、全体的なパフォーマンスに大きな影響を及ぼすことなく、メモリ使用量と推論時間を短縮する強力なテクニックとして登場した。
この研究は、プルーニングがモデル行動に与える影響を理解するための第一歩である。
論文 参考訳(メタデータ) (2023-08-17T20:40:30Z) - A Hybrid Deep Spatio-Temporal Attention-Based Model for Parkinson's
Disease Diagnosis Using Resting State EEG Signals [8.526741765074677]
本研究では,脳波信号を用いたパーキンソン病(PD)の深層学習モデルを提案する。
このモデルは、畳み込みニューラルネットワーク(CNN)、双方向ゲートリカレントユニット(Bi-GRU)、アテンションメカニズムからなるハイブリッドモデルを用いて設計されている。
その結果,提案モデルでは,トレーニングとホールドアウトデータセットの両方でPDを高精度に診断できることが示唆された。
論文 参考訳(メタデータ) (2023-08-14T20:06:19Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - PCA-RF: An Efficient Parkinson's Disease Prediction Model based on
Random Forest Classification [3.6704226968275258]
本稿では,パーキンソン病に対する無作為な森林分類を行う病気予測手法を提案する。
このモデルの精度を主成分分析 (PCA) に適用したニューラルネットワーク (ANN) モデルと比較し, 可視差を捉えた。
モデルの精度は最大90%まで向上した。
論文 参考訳(メタデータ) (2022-03-21T18:59:08Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - EventScore: An Automated Real-time Early Warning Score for Clinical
Events [3.3039612529376625]
臨床劣化を示す各種臨床事象の早期予測のための解釈可能なモデルを構築した。
このモデルは2つのデータセットと4つの臨床イベントで評価される。
私達のモデルは手動で記録された特徴を要求しないで完全に自動化することができます。
論文 参考訳(メタデータ) (2021-02-11T11:55:08Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Bidirectional Representation Learning from Transformers using Multimodal
Electronic Health Record Data to Predict Depression [11.1492931066686]
うつ病の予測のために,ERHシーケンス上で双方向の表現学習を行うための時間的深層学習モデルを提案する。
このモデルでは, 曲線(PRAUC)下において, 最良ベースラインモデルと比較して, 抑うつ予測において0.70から0.76まで, 精度・リコール面積の最大値が得られた。
論文 参考訳(メタデータ) (2020-09-26T17:56:37Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。