論文の概要: InfiniCity: Infinite-Scale City Synthesis
- arxiv url: http://arxiv.org/abs/2301.09637v1
- Date: Mon, 23 Jan 2023 18:59:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-24 12:41:00.838815
- Title: InfiniCity: Infinite-Scale City Synthesis
- Title(参考訳): infinicity:無限大の都市合成
- Authors: Chieh Hubert Lin, Hsin-Ying Lee, Willi Menapace, Menglei Chai,
Aliaksandr Siarohin, Ming-Hsuan Yang and Sergey Tulyakov
- Abstract要約: InfiniCityという新しいフレームワークを提案し、ランダムノイズから制約のない大きく3次元のグラウンド環境を構築し、レンダリングする。
無限画素画像合成モジュールは、鳥眼ビューから任意のスケールの2Dマップを生成する。
オクツリーベースのボクセル補完モジュールは生成された2Dマップを3Dオクツリーに持ち上げる。
ボクセルベースのニューラルレンダリングモジュールは、ボクセルをテキスト化し、2D画像をレンダリングする。
- 参考スコア(独自算出の注目度): 90.88350547332317
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Toward infinite-scale 3D city synthesis, we propose a novel framework,
InfiniCity, which constructs and renders an unconstrainedly large and
3D-grounded environment from random noises. InfiniCity decomposes the seemingly
impractical task into three feasible modules, taking advantage of both 2D and
3D data. First, an infinite-pixel image synthesis module generates
arbitrary-scale 2D maps from the bird's-eye view. Next, an octree-based voxel
completion module lifts the generated 2D map to 3D octrees. Finally, a
voxel-based neural rendering module texturizes the voxels and renders 2D
images. InfiniCity can thus synthesize arbitrary-scale and traversable 3D city
environments, and allow flexible and interactive editing from users. We
quantitatively and qualitatively demonstrate the efficacy of the proposed
framework. Project page: https://hubert0527.github.io/infinicity/
- Abstract(参考訳): 本研究では,無限大の3次元都市合成に向けて,ランダムノイズから制約のない大規模3次元地下環境の構築とレンダリングを行う新しいフレームワーク,InfiniCityを提案する。
infinicityは一見非現実的なタスクを3つの実現可能なモジュールに分解し、2dと3dの両方のデータを利用する。
まず、無限画素画像合成モジュールが、鳥眼ビューから任意のスケールの2Dマップを生成する。
次にoctreeベースのvoxel補完モジュールは、生成された2dマップを3dオクターレにリフトする。
最後に、voxelベースのニューラルネットワークモジュールがvoxelをテキスト化し、2dイメージをレンダリングする。
これにより、InfiniCityは任意の規模の3D都市環境を合成し、フレキシブルでインタラクティブな編集を可能にする。
提案手法の有効性を定量的かつ質的に実証する。
プロジェクトページ: https://hubert0527.github.io/infinicity/
関連論文リスト
- Can We Solve 3D Vision Tasks Starting from A 2D Vision Transformer? [111.11502241431286]
視覚変換器(ViT)は2次元画像理解タスクの解決に有効であることが証明されている。
2Dおよび3Dタスク用のViTは、これまでほとんど転送できない、非常に異なるアーキテクチャ設計を採用してきた。
本稿では,標準的な2D ViTアーキテクチャを用いて,3次元視覚世界を理解するという魅力的な約束を示す。
論文 参考訳(メタデータ) (2022-09-15T03:34:58Z) - VoxGRAF: Fast 3D-Aware Image Synthesis with Sparse Voxel Grids [42.74658047803192]
最先端の3D認識生成モデルは座標に基づくパラメータ化3Dラディアンス場に依存している。
既存のアプローチでは、しばしば解像度の低い特徴写像をレンダリングし、それをアップサンプリングネットワークで処理して最終的な画像を得る。
既存の手法とは対照的に,本手法では完全な3Dシーンを生成するために,単一の前方通過しか必要としない。
論文 参考訳(メタデータ) (2022-06-15T17:44:22Z) - Projective Urban Texturing [8.349665441428925]
没入型都市環境における3次元都市メッシュのテクスチャ自動生成手法を提案する。
Projective Urban Texturing (PUT)は、実際のパノラマ画像から見えない都市メッシュへのテクスチャスタイルを再ターゲットする。
PUTは、未ペア画像からテクスチャへの変換用に設計されたニューラルアーキテクチャの、対照的で敵対的なトレーニングに依存している。
論文 参考訳(メタデータ) (2022-01-25T14:56:52Z) - ImpliCity: City Modeling from Satellite Images with Deep Implicit
Occupancy Fields [20.00737387884824]
ImpliCityは、3Dシーンを暗黙的かつ連続的な占有領域として表現し、ポイント・クラウドとステレオ・フォトの組込みによって駆動される。
画像解像度0.5$,$mのImpliCityは、$approx,$0.7$,$mの平均的な高さ誤差に達し、競合するメソッドを上回っている。
論文 参考訳(メタデータ) (2022-01-24T21:40:16Z) - 3D-aware Image Synthesis via Learning Structural and Textural
Representations [39.681030539374994]
生成モデルを作成することは、2D画像空間と3D物理世界を橋渡しするが、まだ難しい。
近年、GAN(Generative Adversarial Network)とNeRF(Neural Radiance Field)という3次元座標をピクセル値にマッピングする手法が試みられている。
本稿では,構造表現とテクスチャ表現を明示的に学習することで,高忠実度3次元画像合成のための新しいフレームワーク,VolumeGANを提案する。
論文 参考訳(メタデータ) (2021-12-20T18:59:40Z) - M3D-VTON: A Monocular-to-3D Virtual Try-On Network [62.77413639627565]
既存の3D仮想試行法は主に注釈付き3D人体形状と衣服テンプレートに依存している。
本稿では,2次元と3次元の両方のアプローチの利点を生かした,モノクロから3次元仮想トライオンネットワーク(M3D-VTON)を提案する。
論文 参考訳(メタデータ) (2021-08-11T10:05:17Z) - From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object
Detection [101.20784125067559]
本稿では,3次元物体検出の問題に対処するため,Halucinated Hollow-3D R-CNNという新しいアーキテクチャを提案する。
本稿では,まず,視点ビューと鳥眼ビューに点雲を逐次投影することで,多視点特徴を抽出する。
3Dオブジェクトは、新しい階層型Voxel RoIプール操作でボックスリファインメントモジュールを介して検出される。
論文 参考訳(メタデータ) (2021-07-30T02:00:06Z) - Interactive Annotation of 3D Object Geometry using 2D Scribbles [84.51514043814066]
本稿では,ポイントクラウドデータとRGB画像から3次元オブジェクト形状をアノテートする対話型フレームワークを提案する。
当社のフレームワークは,芸術的,グラフィック的専門知識のないナイーブユーザを対象としている。
論文 参考訳(メタデータ) (2020-08-24T21:51:29Z) - Novel-View Human Action Synthesis [39.72702883597454]
対象視点を合成する新しい3D推論を提案する。
まず,対象物体の3次元メッシュを推定し,粗いテクスチャを2次元画像からメッシュに転送する。
本研究では, 局地的, 地域的, グローバルなテクスチャを伝達することで, 半密度のテクスチャメッシュを創出する。
論文 参考訳(メタデータ) (2020-07-06T15:11:51Z) - 3D Human Mesh Regression with Dense Correspondence [95.92326689172877]
単一の2D画像から人体の3Dメッシュを推定することは、拡張現実や人間とロボットのインタラクションといった多くのアプリケーションにおいて重要なタスクである。
前者は畳み込みニューラルネットワーク(CNN)を用いて抽出した大域的画像特徴から3Dメッシュを再構成した。
本稿では,メッシュとUV空間の局所像特徴との密接な対応性を明確に確立する,DecoMRというモデルフリーな3次元メッシュ推定フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-10T08:50:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。