Exploring Parameter Redundancy in the Unitary Coupled-Cluster Ansatze
for Hybrid Variational Quantum Computing
- URL: http://arxiv.org/abs/2301.09825v2
- Date: Thu, 6 Apr 2023 09:04:28 GMT
- Title: Exploring Parameter Redundancy in the Unitary Coupled-Cluster Ansatze
for Hybrid Variational Quantum Computing
- Authors: Shashank G Mehendale and Bo Peng and Niranjan Govind and Yuri Alexeev
- Abstract summary: The number of parameters in the standard UCC ansatze exhibits unfavorable scaling with respect to the system size.
Efforts have been taken to propose some variants of UCC ansatze with better scaling.
In this paper we explore the parameter redundancy in the preparation of unitary coupled-cluster singles and doubles.
- Score: 5.9640499950316945
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the commonly used chemical-inspired approaches in variational quantum
computing is the unitary coupled-cluster (UCC) ansatze. Despite being a
systematic way of approaching the exact limit, the number of parameters in the
standard UCC ansatze exhibits unfavorable scaling with respect to the system
size, hindering its practical use on near-term quantum devices. Efforts have
been taken to propose some variants of UCC ansatze with better scaling. In this
paper we explore the parameter redundancy in the preparation of unitary
coupled-cluster singles and doubles (UCCSD) ansatze employing spin-adapted
formulation, small amplitude filtration, and entropy-based orbital selection
approaches. Numerical results of using our approach on some small molecules
have exhibited a significant cost reduction in the number of parameters to be
optimized and in the time to convergence compared with conventional UCCSD-VQE
simulations. We also discuss the potential application of some machine learning
techniques in further exploring the parameter redundancy, providing a possible
direction for future studies.
Related papers
- Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
We propose a new methodology to design quantum hybrid diffusion models.
We propose two possible hybridization schemes combining quantum computing's superior generalization with classical networks' modularity.
arXiv Detail & Related papers (2024-02-25T16:57:51Z) - Benchmarking hybrid digitized-counterdiabatic quantum optimization [2.983864486954652]
Hybrid digitized-counterdiabatic quantum computing (DCQC) is a promising approach for leveraging the capabilities of near-term quantum computers.
In this study, we analyze the convergence behavior and solution quality of various classicals when used in conjunction with the digitized-counterdiabatic approach.
arXiv Detail & Related papers (2024-01-18T10:05:07Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Variational Quantum Approximate Spectral Clustering for Binary
Clustering Problems [0.7550566004119158]
We introduce the Variational Quantum Approximate Spectral Clustering (VQASC) algorithm.
VQASC requires optimization of fewer parameters than the system size, N, traditionally required in classical problems.
We present numerical results from both synthetic and real-world datasets.
arXiv Detail & Related papers (2023-09-08T17:54:42Z) - Molecular Symmetry in VQE: A Dual Approach for Trapped-Ion Simulations
of Benzene [0.2624902795082451]
Near-term strategies hinge on the use of variational quantum eigensolver (VQE) algorithms combined with a suitable ansatz.
We employ several circuit optimization methods tailored for trapped-ion quantum devices to enhance the feasibility of intricate chemical simulations.
These methods, when applied to a benzene molecule simulation, enabled the construction of an 8-qubit circuit with 69 two-qubit entangling operations.
arXiv Detail & Related papers (2023-08-01T17:03:10Z) - Trainability Enhancement of Parameterized Quantum Circuits via Reduced-Domain Parameter Initialization [3.031137751464259]
We show that by reducing the initial domain of each parameter proportional to the square root of circuit depth, the magnitude of the cost gradient decays at most inversely to qubit count and circuit depth.
This strategy can protect specific quantum neural networks from exponentially many spurious local minima.
arXiv Detail & Related papers (2023-02-14T06:41:37Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Adiabatic quantum computing with parameterized quantum circuits [0.0]
We propose a discrete version of adiabatic quantum computing that can be implemented in a near-term device.
We compare our proposed algorithm with the Variational Quantum Eigensolver on two classical optimization problems.
arXiv Detail & Related papers (2022-06-09T09:31:57Z) - FLIP: A flexible initializer for arbitrarily-sized parametrized quantum
circuits [105.54048699217668]
We propose a FLexible Initializer for arbitrarily-sized Parametrized quantum circuits.
FLIP can be applied to any family of PQCs, and instead of relying on a generic set of initial parameters, it is tailored to learn the structure of successful parameters.
We illustrate the advantage of using FLIP in three scenarios: a family of problems with proven barren plateaus, PQC training to solve max-cut problem instances, and PQC training for finding the ground state energies of 1D Fermi-Hubbard models.
arXiv Detail & Related papers (2021-03-15T17:38:33Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.