論文の概要: Explainable Deep Reinforcement Learning: State of the Art and Challenges
- arxiv url: http://arxiv.org/abs/2301.09937v1
- Date: Tue, 24 Jan 2023 11:41:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-25 13:53:42.131122
- Title: Explainable Deep Reinforcement Learning: State of the Art and Challenges
- Title(参考訳): 説明可能な深層強化学習の現状と課題
- Authors: George A. Vouros
- Abstract要約: 解釈可能性、説明可能性、透明性は、多くの重要な領域で人工知能メソッドを導入する上で重要な問題である。
本稿では, 深層強化学習法について解説する技術の現状について概説する。
- 参考スコア(独自算出の注目度): 1.005130974691351
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Interpretability, explainability and transparency are key issues to
introducing Artificial Intelligence methods in many critical domains: This is
important due to ethical concerns and trust issues strongly connected to
reliability, robustness, auditability and fairness, and has important
consequences towards keeping the human in the loop in high levels of
automation, especially in critical cases for decision making, where both (human
and the machine) play important roles. While the research community has given
much attention to explainability of closed (or black) prediction boxes, there
are tremendous needs for explainability of closed-box methods that support
agents to act autonomously in the real world. Reinforcement learning methods,
and especially their deep versions, are such closed-box methods. In this
article we aim to provide a review of state of the art methods for explainable
deep reinforcement learning methods, taking also into account the needs of
human operators - i.e., of those that take the actual and critical decisions in
solving real-world problems. We provide a formal specification of the deep
reinforcement learning explainability problems, and we identify the necessary
components of a general explainable reinforcement learning framework. Based on
these, we provide a comprehensive review of state of the art methods,
categorizing them in classes according to the paradigm they follow, the
interpretable models they use, and the surface representation of explanations
provided. The article concludes identifying open questions and important
challenges.
- Abstract(参考訳): これは倫理的な懸念と信頼の問題から重要であり、信頼性、堅牢性、監査性、公平性に強く関連しており、高いレベルの自動化において、特に意思決定において重要なケースにおいて、人間と機械の両方が重要な役割を担っている。
研究コミュニティは、クローズド(またはブラック)予測ボックスの説明可能性に多くの注意を払っているが、エージェントが現実世界で自律的に行動するのをサポートするクローズドボックスメソッドの説明可能性には、膨大なニーズがある。
強化学習法、特に深層版はそのようなクローズドボックス法である。
本稿では,人間操作者のニーズ,すなわち実世界の問題解決において現実的かつ批判的な決定を下す者のニーズを考慮した,説明可能な深層強化学習手法に関する技術の現状についてレビューすることを目的とする。
我々は,深層強化学習説明可能性問題の形式的仕様を提供し,一般説明可能な強化学習フレームワークに必要な構成要素を同定する。
そこで,本研究では,これらの手法の現状を包括的にレビューし,それに従うパラダイム,使用する解釈可能なモデル,提供された説明の表面表現に応じてクラスに分類する。
この記事はオープンな質問と重要な課題を特定します。
関連論文リスト
- Evaluation Metrics for Symbolic Knowledge Extracted from Machine
Learning Black Boxes: A Discussion Paper [0.0]
抽出した知識の可読性のレベルを定量的に評価する方法はまだ未解決の問題である。
そのような計量を見つけることが、例えば、異なる知識表現の集合間の自動比較を可能にする鍵となる。
論文 参考訳(メタデータ) (2022-11-01T03:04:25Z) - A.I. Robustness: a Human-Centered Perspective on Technological
Challenges and Opportunities [8.17368686298331]
人工知能(AI)システムのロバスト性はいまだ解明されておらず、大規模な採用を妨げる重要な問題となっている。
本稿では,基本的・応用的両面から文献を整理・記述する3つの概念を紹介する。
我々は、人間が提供できる必要な知識を考慮して、AIの堅牢性を評価し、向上する上で、人間の中心的な役割を強調します。
論文 参考訳(メタデータ) (2022-10-17T10:00:51Z) - Explainability Is in the Mind of the Beholder: Establishing the
Foundations of Explainable Artificial Intelligence [11.472707084860875]
我々は、背景知識に基づいて解釈された透明な洞察(ブラックボックス)に適用する(論理的)推論として説明可能性を定義する。
我々は、透明性と予測力のトレードオフを再考し、アンテホックやポストホックの解説者への影響について述べる。
我々は、人間中心の説明可能性からさまざまなアイデアに基づいて、解釈可能性を必要とするかもしれない機械学習ワークフローのコンポーネントについて論じる。
論文 参考訳(メタデータ) (2021-12-29T09:21:33Z) - On the Objective Evaluation of Post Hoc Explainers [10.981508361941335]
機械学習研究の最近の傾向は、それらがブラックボックスであると考えられる程度に、ますます複雑化しているアルゴリズムにつながっている。
意思決定の不透明度を低減するため、そのようなモデルの内部動作を人間に理解可能な方法で解釈する手法が提案されている。
本稿では,モデルの加法構造から直接導出される地底真理に基づくポストホック説明器の評価のための枠組みを提案する。
論文 参考訳(メタデータ) (2021-06-15T19:06:51Z) - Individual Explanations in Machine Learning Models: A Case Study on
Poverty Estimation [63.18666008322476]
機械学習の手法は、敏感な社会的文脈でますます適用されつつある。
本研究の主な目的は2つある。
まず、これらの課題を公開し、関連性のある新しい説明方法の使用にどのように影響するか。
次に、関連するアプリケーションドメインで説明メソッドを実装する際に直面するような課題を軽減する一連の戦略を提示します。
論文 参考訳(メタデータ) (2021-04-09T01:54:58Z) - Individual Explanations in Machine Learning Models: A Survey for
Practitioners [69.02688684221265]
社会的関連性の高い領域の決定に影響を与える洗練された統計モデルの使用が増加しています。
多くの政府、機関、企業は、アウトプットが人間の解釈可能な方法で説明しにくいため、採用に消極的です。
近年,機械学習モデルに解釈可能な説明を提供する方法として,学術文献が多数提案されている。
論文 参考訳(メタデータ) (2021-04-09T01:46:34Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
我々は,モデル予測に関連する不確実性を推定し,伝達することにより,相補的な透明性の形式を考えることについて議論する。
モデルの不公平性を緩和し、意思決定を強化し、信頼できるシステムを構築するために不確実性がどのように使われるかを説明する。
この研究は、機械学習、可視化/HCI、デザイン、意思決定、公平性にまたがる文学から引き出された学際的レビューを構成する。
論文 参考訳(メタデータ) (2020-11-15T17:26:14Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
説明可能な強化学習(XRL)の実現に向けての最近の成果を概観する。
エージェントの振る舞いを正当化し、説明することが不可欠である重要な状況において、RLモデルのより良い説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
論文 参考訳(メタデータ) (2020-08-15T10:11:42Z) - Fanoos: Multi-Resolution, Multi-Strength, Interactive Explanations for
Learned Systems [0.0]
Fanoosは、正式な検証テクニック、検索、ユーザインタラクションを組み合わせて、望まれる粒度と忠実度で説明を探索するフレームワークである。
Inverted double pendulum と learn CPU usage model の学習コントローラ上で,ユーザからの要求に応じて,Fanoos が説明の抽象性を生成・調整できることを示す。
論文 参考訳(メタデータ) (2020-06-22T17:35:53Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
本稿では,データ駆動型アプローチと知識駆動型アプローチの強みを組み合わせたフレームワークとして,ハイブリッドAI手法を提案する。
具体的には、知識ベースを用いて深層ニューラルネットワークの学習過程を導く方法として、ニューロシンボリズムの概念を継承する。
論文 参考訳(メタデータ) (2020-03-09T15:04:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。