Learned Interferometric Imaging for the SPIDER Instrument
- URL: http://arxiv.org/abs/2301.10260v2
- Date: Mon, 15 Jan 2024 15:34:41 GMT
- Title: Learned Interferometric Imaging for the SPIDER Instrument
- Authors: Matthijs Mars, Marta M. Betcke, Jason D. McEwen
- Abstract summary: We present two data-driven approaches for reconstructing images from measurements made by the SPIDER instrument.
Deep learning is used to learn prior information from training data, increasing the reconstruction quality and significantly reducing computation time.
We show that these methods can also be applied in domains where training data is scarce, such as astronomical imaging.
- Score: 5.65707814923407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Segmented Planar Imaging Detector for Electro-Optical Reconnaissance
(SPIDER) is an optical interferometric imaging device that aims to offer an
alternative to the large space telescope designs of today with reduced size,
weight and power consumption. This is achieved through interferometric imaging.
State-of-the-art methods for reconstructing images from interferometric
measurements adopt proximal optimization techniques, which are computationally
expensive and require handcrafted priors. In this work we present two
data-driven approaches for reconstructing images from measurements made by the
SPIDER instrument. These approaches use deep learning to learn prior
information from training data, increasing the reconstruction quality, and
significantly reducing the computation time required to recover images by
orders of magnitude. Reconstruction time is reduced to ${\sim} 10$
milliseconds, opening up the possibility of real-time imaging with SPIDER for
the first time. Furthermore, we show that these methods can also be applied in
domains where training data is scarce, such as astronomical imaging, by
leveraging transfer learning from domains where plenty of training data are
available.
Related papers
- Image Restoration with Point Spread Function Regularization and Active
Learning [5.575847437953924]
Large-scale astronomical surveys can capture numerous images of celestial objects, including galaxies and nebulae.
varying noise levels and point spread functions can hamper the accuracy and efficiency of information extraction from these images.
We propose a novel image restoration algorithm that connects a deep learning-based restoration algorithm with a high-fidelity telescope simulator.
arXiv Detail & Related papers (2023-10-31T23:16:26Z) - A Deep Learning Approach for SAR Tomographic Imaging of Forested Areas [10.477070348391079]
We show that light-weight neural networks can be trained to perform the tomographic inversion with a single feed-forward pass.
We train our encoder-decoder network using simulated data and validate our technique on real L-band and P-band data.
arXiv Detail & Related papers (2023-01-20T14:34:03Z) - DeepRM: Deep Recurrent Matching for 6D Pose Refinement [77.34726150561087]
DeepRM is a novel recurrent network architecture for 6D pose refinement.
The architecture incorporates LSTM units to propagate information through each refinement step.
DeepRM achieves state-of-the-art performance on two widely accepted challenging datasets.
arXiv Detail & Related papers (2022-05-28T16:18:08Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
Deep image prior was introduced as an effective prior for image reconstruction.
Despite its impressive reconstructive properties, the approach is slow when compared to learned or traditional reconstruction techniques.
We develop a two-stage learning paradigm to address the computational challenge.
arXiv Detail & Related papers (2021-11-23T15:08:26Z) - Data augmentation for deep learning based accelerated MRI reconstruction
with limited data [46.44703053411933]
Deep neural networks have emerged as very successful tools for image restoration and reconstruction tasks.
To achieve state-of-the-art performance, training on large and diverse sets of images is considered critical.
We propose a pipeline for data augmentation for accelerated MRI reconstruction and study its effectiveness at reducing the required training data.
arXiv Detail & Related papers (2021-06-28T19:08:46Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Real-time Non-line-of-sight Imaging with Two-step Deep Remapping [0.0]
Non-line-of-sight (NLOS) imaging takes the indirect light into account.
Most solutions employ a transient scanning process, followed by a back-projection based algorithm to reconstruct the NLOS scenes.
Here we propose a new NLOS solution to address the above defects, with innovations on both detection equipment and reconstruction algorithm.
arXiv Detail & Related papers (2021-01-26T00:08:54Z) - AS-Net: Fast Photoacoustic Reconstruction with Multi-feature Fusion from
Sparse Data [1.7237160821929758]
Photoacoustic imaging is capable of acquiring high contrast images of optical absorption at depths much greater than traditional optical imaging techniques.
In this paper, we employ a novel signal processing method to make sparse PA raw data more suitable for the neural network.
We then propose Attention Steered Network (AS-Net) for PA reconstruction with multi-feature fusion.
arXiv Detail & Related papers (2021-01-22T03:49:30Z) - Searching for Efficient Architecture for Instrument Segmentation in
Robotic Surgery [58.63306322525082]
Most applications rely on accurate real-time segmentation of high-resolution surgical images.
We design a light-weight and highly-efficient deep residual architecture which is tuned to perform real-time inference of high-resolution images.
arXiv Detail & Related papers (2020-07-08T21:38:29Z) - BP-DIP: A Backprojection based Deep Image Prior [49.375539602228415]
We propose two image restoration approaches: (i) Deep Image Prior (DIP), which trains a convolutional neural network (CNN) from scratch in test time using the degraded image; and (ii) a backprojection (BP) fidelity term, which is an alternative to the standard least squares loss that is usually used in previous DIP works.
We demonstrate the performance of the proposed method, termed BP-DIP, on the deblurring task and show its advantages over the plain DIP, with both higher PSNR values and better inference run-time.
arXiv Detail & Related papers (2020-03-11T17:09:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.