論文の概要: Recursive deep learning framework for forecasting the decadal world economic outlook
- arxiv url: http://arxiv.org/abs/2301.10874v2
- Date: Tue, 01 Oct 2024 07:10:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-02 16:33:33.239337
- Title: Recursive deep learning framework for forecasting the decadal world economic outlook
- Title(参考訳): 先進的世界経済見通し予測のための再帰的深層学習フレームワーク
- Authors: Tianyi Wang, Rodney Beard, John Hawkins, Rohitash Chandra,
- Abstract要約: 我々は、世界経済のGDP成長率を10年にわたって予測する深層学習フレームワークを開発する。
先進国,開発途上国において,優れた深層学習モデルを検証し,従来の計量モデルと比較した。
- 参考スコア(独自算出の注目度): 2.6510890394077573
- License:
- Abstract: The gross domestic product (GDP) is the most widely used indicator in macroeconomics and the main tool for measuring a country's economic output. Due to the diversity and complexity of the world economy, a wide range of models have been used, but there are challenges in making decadal GDP forecasts given unexpected changes such as emergence of catastrophic world events including pandemics and wars. Deep learning models are well suited for modelling temporal sequences and time series forecasting. In this paper, we develop a deep learning framework to forecast the GDP growth rate of the world economy over a decade. We use the Penn World Table as the data source featuring 13 countries prior to the COVID-19 pandemic, such as Australia, China, India, and the United States. We present a recursive deep learning framework to predict the GDP growth rate in the next ten years. We test prominent deep learning models and compare their results with traditional econometric models for selected developed and developing countries. Our decadal forecasts reveal that that most of the developed countries would experience economic growth slowdown, stagnation and even recession within five years (2020-2024). Furthermore, our model forecasts show that only China, France, and India would experience stable GDP growth.
- Abstract(参考訳): 国内総生産(GDP)は、マクロ経済学において最も広く使われている指標であり、国の経済生産を測定するための主要なツールである。
世界経済の多様性と複雑さのために、幅広いモデルが使用されているが、パンデミックや戦争を含む破滅的な世界イベントの出現など、予期せぬ変化を生じさせるような、緩やかなGDP予測を行う上での課題がある。
深層学習モデルは時間列のモデル化や時系列予測に適している。
本稿では,10年以上にわたる世界経済のGDP成長率を予測するためのディープラーニングフレームワークを開発する。
われわれはペン・ワールド・テーブルを、オーストラリア、中国、インド、米国など、新型コロナウイルス(COVID-19)のパンデミックに先立つ13カ国を対象とするデータソースとして使用しています。
今後10年間のGDP成長率を予測するための再帰的深層学習フレームワークを提案する。
先進国,開発途上国において,優れた深層学習モデルを検証し,従来の計量モデルと比較した。
先進国の大半が5年以内に経済成長の鈍化、停滞、景気後退を経験する(2020-2024年)と予測している。
さらに、我々のモデルでは、中国、フランス、インドのみがGDPの安定的な成長を経験することを示している。
関連論文リスト
- Machine learning and economic forecasting: the role of international trade networks [0.0]
本研究では,非グローバル化の動向が国際貿易ネットワークに与える影響と,経済成長予測の改善に果たす役割について検討する。
2010年から2022年までの200か国近くの貿易データを用いて、貿易政策の不確実性の高まりによるネットワークトポロジの著しい変化を特定する。
地域特化貿易ネットワークから評価されたネットワーク記述子は、国のGDP成長率予測の質を大幅に向上させる。
論文 参考訳(メタデータ) (2024-04-11T21:04:56Z) - PanGu-$\pi$: Enhancing Language Model Architectures via Nonlinearity
Compensation [97.78045712375047]
大規模言語モデル(LLM)のための新しい効率的なモデルアーキテクチャを提案する。
そこで,PanGu-$pi$-7Bは,約10%の推論速度を持つベンチマークに匹敵する性能が得られることを示す。
さらに,PanGu-$pi$-7Bを金融法と法律の高価値領域に導入し,実践的応用のためにYunShanというLLMを開発した。
論文 参考訳(メタデータ) (2023-12-27T11:49:24Z) - Nowcasting Madagascar's real GDP using machine learning algorithms [0.0]
マダガスカルにおける国内総生産(GDP)の予測能力について検討する。
線形正則回帰(Ridge,Lasso,Elastic-net)、次元減少モデル(主成分回帰)、k-nearest neighborsアルゴリズム(k-NN回帰)を含む一般的な回帰モデルを訓練した。
我々は,根平均二乗誤差(RMSE),平均絶対誤差(MAE),平均絶対パーセンテージ誤差(MAPE)を算出し,各モデルの流速精度を測定した。
論文 参考訳(メタデータ) (2023-12-24T20:40:54Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - Measuring Causal Effects of Data Statistics on Language Model's
`Factual' Predictions [59.284907093349425]
大量のトレーニングデータが、最先端のNLPモデルの高性能化の大きな理由の1つである。
トレーニングデータがどのように予測に影響を及ぼすかを記述するための言語を,因果的フレームワークを通じて提供する。
我々のフレームワークは、高価なモデルの再訓練の必要性を回避し、観測データのみに基づいて因果効果を推定することができる。
論文 参考訳(メタデータ) (2022-07-28T17:36:24Z) - Strict baselines for Covid-19 forecasting and ML perspective for USA and
Russia [105.54048699217668]
Covid-19は、2年間にわたって蓄積されたデータセットを収集し、予測分析に使用できるようにする。
本研究は、米国とロシアの2カ国の地域データに基づいて、Covid-19の拡散のダイナミクスを予測するための様々な種類の方法に関する一貫した研究結果である。
論文 参考訳(メタデータ) (2022-07-15T18:21:36Z) - Forecasting Future World Events with Neural Networks [68.43460909545063]
Autocastは数千の予測質問と付随するニュースコーパスを含むデータセットである。
ニュースコーパスは日付によって整理され、人間が過去の予測を行った条件を正確にシミュレートすることができる。
予測タスクで言語モデルをテストし、パフォーマンスが人間専門家のベースラインよりはるかに低いことを確認します。
論文 参考訳(メタデータ) (2022-06-30T17:59:14Z) - Stock Price Prediction Using Time Series, Econometric, Machine Learning,
and Deep Learning Models [0.0]
本稿では,株価予測のための時系列,エコノメトリ,各種学習モデルについて述べる。
2004年1月から2019年12月までのInfosys、ICICI、SUN PHARMAのデータは、ここでモデルのトレーニングとテストに使用された。
火星は最高の機械学習モデルであることが証明され、LSTMは最高のディープラーニングモデルであることが証明された。
論文 参考訳(メタデータ) (2021-11-01T17:17:52Z) - Indian Economy and Nighttime Lights [0.0]
gdpと夜間照明の関係を探ることを目指している。
具体的にはDMSPとVIIRSのデータセットを調べます。
我々は様々な経済対策の関係を見出している。
論文 参考訳(メタデータ) (2021-01-27T13:49:13Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Stock Price Prediction Using Machine Learning and LSTM-Based Deep
Learning Models [1.335161061703997]
本稿では,異なる機械学習モデルとディープラーニングモデルを構築するための,株価予測のためのハイブリッドモデリング手法を提案する。
2014年12月29日から2020年7月31日まで、インドの国立証券取引所(NSE)のNIFTY50指数を用いた。
我々は,LSTM回帰モデルを用いて,アーキテクチャや入力データの構造に異なる4つの異なるモデルを用いて,将来のNIFTY 50オープン値を予測する。
論文 参考訳(メタデータ) (2020-09-20T20:32:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。